361
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of hybrid neutralization/biosorption process for zinc ions removal from automotive battery effluent by dolomite and fish scales

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2373-2388 | Received 31 Aug 2017, Accepted 11 Feb 2018, Published online: 26 Feb 2018

References

  • Abdolali A, Ngo HH, Guo W, et al. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresour Technol. 2017;229:78–87. doi: 10.1016/j.biortech.2017.01.016
  • Afkhami A, Saber-Tehrani M, Bagheri H. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater. 2010;181:836–844. doi: 10.1016/j.jhazmat.2010.05.089
  • Muthusamy S, Venkatachalam S. Competitive biosorption of Cr(VI) and Zn(II) ions in single- and binary-metal systems onto a biodiesel waste residue using batch and fixed-bed column studies. RSC Adv. 2015;5:45817–45826. doi: 10.1039/C5RA05962C
  • Kalavathy MH, Miranda LR. Comparison of copper adsorption from aqueous solution using modified and unmodified Hevea brasiliensis saw dust. Desalination. 2010;255:165–174. doi: 10.1016/j.desal.2009.12.028
  • Badwal SPS, Giddey SS, Munnings C, et al. Emerging electrochemical energy conversion and storage technologies. Front Chem. 2014;2:1–28. doi: 10.3389/fchem.2014.00079
  • Chang Y, Mao X, Zhao Y, et al. Lead-acid battery use in the development of renewable energy systems in China. J Power Sour. 2009;191:176–183. doi: 10.1016/j.jpowsour.2009.02.030
  • Treptow RS. The lead-acid battery: its voltage in theory and in practice. J Chem Educ. 2002;79:334. doi: 10.1021/ed079p334
  • Mansoorian HJ, Mahvi AH, Jafari AJ. Removal of lead and zinc from battery industry wastewater using electrocoagulation process: influence of direct and alternating current by using iron and stainless steel rod electrodes. Sep Purif Technol. 2014;135:165–175. doi: 10.1016/j.seppur.2014.08.012
  • Bhattacharya AK, Mandal SN, Das SK. Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem Eng J. 2006;123:43–51. doi: 10.1016/j.cej.2006.06.012
  • Sun Z, Cao H, Zhang X, et al. Spent lead-acid battery recycling in China – a review and sustainable analyses on mass flow of lead. Waste Manag. 2017;64:190–201. doi: 10.1016/j.wasman.2017.03.007
  • Bahadir T, Bakan G, Altas L, et al. The investigation of lead removal by biosorption: an application at storage battery industry wastewaters. Enzyme Microb Technol. 2007;41:98–102. doi: 10.1016/j.enzmictec.2006.12.007
  • Pehlivan E, Özkan AM, Dinç S, et al. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J Hazard Mater. 2009;167:1044–1049. doi: 10.1016/j.jhazmat.2009.01.096
  • Uzunoğlu D, Özer A. Adsorption of hazardous heavy metal copper(II) from aqueous effluents onto waste material fish (Dicentrarchus labrax) scales: optimization, equilibrium, kinetics, thermodynamic, and characterization studies. Des Water Treat. 2016;57:22794–22798. doi: 10.1080/19443994.2015.1111594
  • Nadeem R, Naqvi MA, Nasir MH, et al. Efficacy of physically pretreated Mangifera indica biomass for Cu2+ and Zn2+ sequestration. J Saud Chem Soc. 2015;19:23–35. doi: 10.1016/j.jscs.2011.12.013
  • Mushtaq M, Bhatti HN, Iqbal M, et al. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: isotherms, kinetics, thermodynamic and desorption studies. J Environ Manage. 2016;176:21–33. doi: 10.1016/j.jenvman.2016.03.013
  • Bhatti HN, Zaman Q, Kausar A, et al. Efficient remediation of Zr(IV) using citrus peel waste biomass: kinetic, equilibrium and thermodynamic studies. Ecol Eng. 2016;95:216–228. doi: 10.1016/j.ecoleng.2016.06.087
  • Naeem H, Bhatti HN, Sadaf S, et al. Uranium remediation using modified Vigna radiata waste biomass. Appl Radiat Isot. 2017;123:94–101. doi: 10.1016/j.apradiso.2017.02.027
  • Bhatnagar A, Sillanpää M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment: a review. Chem Eng J. 2010;157:277–296. doi: 10.1016/j.cej.2010.01.007
  • Kratochvil D, Volesky B. Advances in the biosorption of heavy metals. Trends Biotechnol. 1998;16:291–300. doi: 10.1016/S0167-7799(98)01218-9
  • Fomina M, Gadd GM. Biosorption: current perspectives on concept, definition and application. Bioresour Technol. 2014;160:3–14. doi: 10.1016/j.biortech.2013.12.102
  • Villanueva-Espinosa JF, Hernandez-Esparza M, Ruiz-Trevino FA. Adsorptive properties of fish scales of Oreochromis niloticus (Mojarra Tilapia) for metallic ion removal from waste water. Ind Eng Chem Res. 2001;40:3563–3569. doi: 10.1021/ie000884v
  • Ribeiro C, Scheufele FB, Espinoza-Quiñones FR, et al. Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye. Colloids Surfaces A Physicochem. Eng. Asp. 2015;482:693–701. doi: 10.1016/j.colsurfa.2015.05.057
  • Neves C V., Scheufele FB, Nardino AP, et al. Phenomenological modeling of reactive dye adsorption onto fish scales surface in the presence of electrolyte and surfactant mixtures. Environ Technol. 2017;1–17. doi: 10.1080/09593330.2017.1356876
  • Nadeem R, Ansari TM, Khalid AM. Fourier transform infrared spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales. J Hazard Mater. 2008;156:64–73. doi: 10.1016/j.jhazmat.2007.11.124
  • Espinoza-Quiñones FR, Módenes AN, de Pauli AR, et al. Analysis of trace elements in groundwater using ICP-OES and TXRF techniques and its compliance with Brazilian protection standards. Water Air Soil Pollut. 2015;226:32. doi: 10.1007/s11270-015-2315-8
  • APHA. Standard methods for the examination of water and wastewater. Standard Method; 2005.
  • Lagergren S. About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakademiens. 1898;24:1–39.
  • Ho YS, McKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot. 1998;76:332–340. doi: 10.1205/095758298529696
  • Peers AM. Elovich adsorption kinetics and the heterogeneous surface. J Catalyisis. 1965;503:499–503. doi: 10.1016/0021-9517(65)90054-0
  • Monte Blanco SPD, Scheufele FB, Módenes AN, et al. Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chem Eng J. 2017;307:466–475. doi: 10.1016/j.cej.2016.08.104
  • Borba CE, Santos GHF, Silva EA. Mathematical modeling of a ternary Cu–Zn–Na ion exchange system in a fixed-bed column using amberlite IR 120. Chem Eng J. 2012;189–190:49–56. doi: 10.1016/j.cej.2012.02.017
  • Plazinski W, Rudzinski W, Plazinska A. Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci. 2009;152:2–13. doi: 10.1016/j.cis.2009.07.009
  • Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des. 2016;109:495–504. doi: 10.1016/j.cherd.2016.02.006
  • Rudzinski W, Plazinski W. On the applicability of the pseudo-second order equation to represent the kinetics of adsorption at solid/solution interfaces: a theoretical analysis based on the statistical rate theory. Adsorption. 2009;15:181–192. doi: 10.1007/s10450-009-9167-8
  • Ward CA, Findlay RD, Rizk M. Statistical rate theory of interfacial transport. IV: predicted rate of dissociative adsorption. J Chem Phys. 1982;76:5624–5631. doi: 10.1063/1.442868
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004
  • Tosun İ. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models. Int J Environ Res Public Health. 2012;9:970–984. doi: 10.3390/ijerph9030970
  • Sips R. On the structure of a catalyst surface. J Chem Phys. 1948;16:490–495. doi: 10.1063/1.1746922
  • Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156:2–10. doi: 10.1016/j.cej.2009.09.013
  • Jeppu GP, Clement TP. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J Contam Hydrol. 2012;129–130:46–53. doi: 10.1016/j.jconhyd.2011.12.001
  • Garcı´a M, Campos E, Dalmau M, et al. Structure–activity relationships for association of linear alkylbenzene sulfonates with activated sludge. Chemosphere 2002;49:279–286. doi: 10.1016/S0045-6535(02)00182-0
  • Brazil. Norm 357/2005 (in Portuguese) published on the Union Official Newspaper of Brazil (18 March 2005), No 53, pp. 58–63. Brazilian Council of Environmental Quality Regulation - CONAMA; 2005 p. 58–63.
  • Ikoma T, Kobayashi H, Tanaka J, et al. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol. 2003;142:327–333. doi: 10.1016/S1047-8477(03)00053-4
  • Marrakchi F, Ahmed MJ, Khanday WA, et al. Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. J Taiwan Inst Chem Eng. 2017;71:47–54. doi: 10.1016/j.jtice.2016.12.026
  • Scheufele FB, Módenes AN, Borba CE, et al. Monolayer–multilayer adsorption phenomenological model: kinetics, equilibrium and thermodynamics. Chem Eng J. 2016;284:1328–1341. doi: 10.1016/j.cej.2015.09.085
  • Minamisawa M, Minamisawa H, Yoshida S, et al. Adsorption behavior of heavy metals on biomaterials. J Agric Food Chem. 2004;52:5606–5611. doi: 10.1021/jf0496402
  • Saber-Samandari S, Saber-Samandari S, Nezafati N, et al. Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads. J Environ Manage. 2014;146:481–490. doi: 10.1016/j.jenvman.2014.08.010
  • Movasaghi Z, Rehman S, ur Rehman DI. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43:134–179. doi: 10.1080/05704920701829043
  • Yang S, Guo Z, Sheng G, et al. Application of a novel plasma-induced CD/MWCNT/iron oxide composite in zinc decontamination. Carbohydr Polym. 2012;90:1100–1105. doi: 10.1016/j.carbpol.2012.06.049
  • Michalak I, Chojnacka K, Witek-Krowiak A. State of the art for the biosorption process – a review. Appl Biochem Biotechnol. 2013;170:1389–1416. doi: 10.1007/s12010-013-0269-0
  • Ren F, Xin R, Ge X, et al. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5:3141–3149. doi: 10.1016/j.actbio.2009.04.014
  • Miyaji F, Kono Y, Suyama Y. Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull. 2005;40:209–220. doi: 10.1016/j.materresbull.2004.10.020
  • Hunter T. Why nature chose phosphate to modify proteins. Philos Trans R Soc B Biol Sci. 2012;367:2513–2516. doi: 10.1098/rstb.2012.0013
  • Abdolali A, Guo WS, Ngo HH, et al. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour Technol. 2014;160:57–66. doi: 10.1016/j.biortech.2013.12.037
  • Puigdomenech I. HYDRA: hydrochemical equilibrium-constant database software. Sweden: Royal Institute of Technology; 2004.
  • Lide DR. CRC handbook of chemistry and physics, 84th edition, 2003-2004. Handb Chem Phys. 2003;53:2616.
  • Mei H, Yu S, Tan X, et al. Evaluation of the influence of environmental conditions on the removal of Pb(II) from wastewater by Ca-rectorite. Sep Sci Technol. 2015;50:2257–2266. doi: 10.1080/01496395.2015.1058821

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.