30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The bacterial community drive the humification and greenhouse gas emissions during plant residues composting under different aeration rates

, , , , , & show all
Received 02 Feb 2024, Accepted 16 May 2024, Published online: 26 Jun 2024
 

ABSTRACT

This study investigated the effects of different aeration intensities on organic matter (OM) degradation, greenhouse gas emissions (GHG) as well as humification during plant residue composting. Three intermittent aeration intensities of 0.084 (Tlow), 0.19 (Tmedium) and 0.34 (Thigh) L min−1kg−1 DM with 30 min on/30 min off were conducted on a lab-scale composting experiment. Results showed that OM mineralization in Thigh was more evident than Tlow and Tmedium, resulting in the highest humic acid content. Humic acid content in Tmedium and Thigh was 15.7% and 18.5% higher than that in Tlow. The average O2 concentration was 4.9%, 9.5% and 13.6% for Tlow, Tmedium and Thigh. Compared with Tmedium and Thigh, Tlow reduced CO2 and N2O emissions by 18.3%–39.6% and 72.4%–63.9%, but the CH4 emission was highest in Tlow. But the total GHG emission was the lowest in Thigh. Linear Discriminant Analysis Effect Size analysis showed that the core bacteria within Tlow mainly belonged to Anaerolineaceae, which was significantly negatively correlated to the emission of CH4. Thermostaphylospora, Unclassified_Vicinamibacteraceae and Sulfurifustis were identified as core bacteria in Tmedium and Thigh, and these genus were significantly postively correlated to CO2 and N2O emissions. Redundancy analysis showed that total orgnic carbon, O2 and electrical conductivity were the key factors affecting the evolution of bacterial community.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data available on request from the authors

The data that support the findings of this study are available from the corresponding author (Y. Cao) upon reasonable request.

Additional information

Funding

This research was supported by the National Key Research and Development Project (2023YFD1702001), National Natural Science Foundation of China (42077100), (BE2023672), China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.