30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The bacterial community drive the humification and greenhouse gas emissions during plant residues composting under different aeration rates

, , , , , & show all
Received 02 Feb 2024, Accepted 16 May 2024, Published online: 26 Jun 2024

Reference

  • Atallah E, Zeaiter J, Ahmad MN, et al. Hydrothermal carbonization of spent mushroom compost waste compared against torrefaction and pyrolysis. Fuel Process Technol. 2021;216:106795. doi:10.1016/j.fuproc.2021.106795
  • Leong YK, Ma TW, Chang J, et al. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): a review. Bioresour Technol. 2022;344:126157. doi:10.1016/j.biortech.2021.126157
  • Sajid S, Zveushe OK, de Dios VR, et al. Pretreatment of rice straw by newly isolated fungal consortium enhanced lignocellulose degradation and humification during composting. Bioresour Technol. 2022;354:127150. doi:10.1016/j.biortech.2022.127150
  • Temel FA. Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage sludge. Bioresour Technol. 2023;373:128748. doi:10.1016/j.biortech.2023.128748
  • Wan Y, Liu J, Deng F, et al. Screening of lignin-degrading fungi and bioaugmentation on the directional humification of garden waste composting. Ind Crop Prod. 2023;203:117208. doi:10.1016/j.indcrop.2023.117208
  • Jurado MM, Suárez-Estrella F, López MJ, et al. Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresour Technol. 2015;186:15–24. doi:10.1016/j.biortech.2015.03.059
  • Li H, He Y, Yan Z, et al. Insight into the microbial mechanisms for the improvement of spent mushroom substrate composting efficiency driven by phosphate-solubilizing Bacillus subtilis. J Environ Manage. 2023;336:117561. doi:10.1016/j.jenvman.2023.117561
  • Reyes-Torres M, Oviedo-Ocaña ER, Dominguez I, et al. Systematic review on the composting of green waste: feedstock quality and optimization strategies. Waste Manage. 2018;77:486–499. doi:10.1016/j.wasman.2018.04.037
  • Gu J, Cao Y, Sun Q, et al. The dominant role of bacterial community and network characteristics drive the humification process and greenhouse gas emissions during plant residues composting under different aeration rates. Res Sq, prepint. 2023. doi:10.21203/rs.3.rs-3481964/v1
  • Nafez AH, Nikaeen M, Bina B, et al. Evaluation of stability and maturity parameters in wastewater sludge composting with different aeration strategies and a mixture of green plant wastes as bulking agent. Fresen Environ Bull. 2015;24(7):2406–2414.
  • Zhang L, Sun X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manage (Oxford). 2016;48:115–126. doi:10.1016/j.wasman.2015.11.032
  • Xu Z, Qi C, Zhang L, et al. Bacterial dynamics and functions for gaseous emissions and humification in response to aeration intensities during kitchen waste composting. Bioresour Technol. 2021;337:125369. doi:10.1016/j.biortech.2021.125369
  • Li S, Li D, Li J, et al. Evaluation of humic substances during co- composting of sewage sludge and corn stalk under different aeration rates. Bioresour Technol. 2017;245:1299–1302. doi:10.1016/j.biortech.2017.08.177
  • Zeng JF, Shen XL, Yin HJ, et al. Oxygen dynamics,: organic matter degradation and main gas emissions during pig manure composting: effect of intermittent aeration. Bioresour Technol. 2022;361:127697. doi:10.1016/j.biortech.2022.127697
  • Cheng J, Gao X, Yan Z, et al. Intermittent aeration to reduce gaseous emission and advance humification in food waste digestate composting: performance and mechanisms. Bioresour Technol. 2023;371:128644. doi:10.1016/j.biortech.2023.128644
  • Shen Y, Ren L, Li G, et al. Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture. Waste Manage 2011;31(1):33–38. doi:10.1016/j.wasman.2010.08.019
  • Zhang B, Xu Z, Jiang T, et al. Gaseous emission and maturity in composting of livestock manure and tobacco wastes: effects of aeration intensities and mitigation by physiochemical additives. Environ Technol Inno. 2020;19:100899. doi:10.1016/j.eti.2020.100899
  • Fang C, Yuan X, Liao K, et al. Micro-aerobic conditions based on membrane-covered improves the quality of compost products: insights into fungal community evolution and dissolved organic matter characteristics. Bioresour Technol. 2022;362:127849. doi:10.1016/j.biortech.2022.127849
  • Meng X, Wang Q, Zhao X, et al. Effect of aeration/micro-aeration on lignocellulosic decomposition,: maturity and seedling phytotoxicity during full-scale biogas residues composting. Waste Manage. 2023;168:246–255. doi:10.1016/j.wasman.2023.06.007
  • Huet JC, Druilhe A, Trémier JC, et al. Debenest. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting. Bioresour Technol. 2012;114:428–436. doi:10.1016/j.biortech.2012.03.031
  • Ma R, Liu Y, Wang J, et al. Effects of oxygen levels on maturity: humification, and odor emissions during chicken manure composting. J Clean Prod. 2022;369:133326. doi:10.1016/j.jclepro.2022.133326
  • Cao Y, Wang J, Huang H, et al. Spectroscopic evidence for hyperthermophilic pretreatment intensifying humification during pig manure and rice straw composting. Bioresour Technol. 2019;294:122131. doi:10.1016/j.biortech.2019.122131
  • Islam SMM, Gaihre YK, Islam MR, et al. Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. Sci Total Environ. 2020;734:139382. doi:10.1016/j.scitotenv.2020.139382
  • Yang Y, Chen W, Liu G, et al. Effects of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. Waste Manage. 2023;166:104–114. doi:10.1016/j.wasman.2023.04.034
  • Peng L, Tang R, Wang G, et al. Effect of aeration rate, aeration pattern, and turning frequency on maturity and gaseous emissions during kitchen waste composting. Environ Technol Inno. 2023;29:102997. doi:10.1016/j.eti.2022.102997
  • Zhang LX, Gao XZ, Shi T, et al. Regulating aeration intensity to simultaneously improve humification and mitigate gaseous emissions in foodwaste digestate composting: performance and bacterial dynamics. Sci Total Environ. 2023;889:164239. doi:10.1016/j.scitotenv.2023.164239
  • Li X, Shi Z, Wang J, et al. The quality of dissolved organic matter extracted at different times from pig compost and its copper binding capacity based on EEM-PARAFAC. Ecotoxicol Environ Saf. 2021;207:111545. doi:10.1016/j.ecoenv.2020.111545
  • Guo X, Liu H, Wu S. Humic substances developed during organic waste composting: formation mechanisms,: structural properties, and agronomic functions. Sci Total Environ. 2019;662:501–510. doi:10.1016/j.scitotenv.2019.01.137
  • Cáceres R, Malinska K, Marfà O. Nitrification within composting: a review. Waste Manage. 2018;72:119–137. doi:10.1016/j.wasman.2017.10.049
  • Thompson AG, Wagner-Riddle C, Fleming R. Emissions of N2O and CH4 during the composting of liquid swine manure. Environ Monit Assess. 2004;91(1):87–104. doi:10.1023/B:EMAS.0000009231.04123.2d
  • Zhang L, Zhu Y, Zhang J, et al. Impacts of iron oxide nanoparticles on organic matter degradation and microbial enzyme activities during agricultural waste composting. Waste Manage. 2019;95:289–297. doi:10.1016/j.wasman.2019.06.025
  • Wang G, Yang Y, Kong Y, et al. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. J Hazard Mater. 2022;421:126809. doi:10.1016/j.jhazmat.2021.126809
  • Cook KL, Ritchey EL, Loughrin JH, et al. Effect of turning frequency and season on composting materials from swine high-rise facilities. Waste Manage. 2015;39:86–95. doi:10.1016/j.wasman.2015.02.019
  • Haug R. The practical handbook of compost engineering. 1st ed. CRC Press, Boca Raton, Florida; 1993.
  • Zeng JF, Yin H, Shen X, et al. Effect of aeration interval on oxygen consumption and GHG emission during pig manure composting. Bioresour Technol. 2018;250:214–220. doi:10.1016/j.biortech.2017.11.010
  • Qi C, Yin R, Cheng J, et al. Bacterial dynamics for gaseous emission and humification during bio-augmented composting of kitchen waste with lime addition for acidity regulation. SciTotal Environ. 2022;848:157653. doi:10.1016/j.scitotenv.2022.157653
  • Manu MK, Li D, Luo L, et al. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour Technol. 2021;334:125032. doi:10.1016/j.biortech.2021.125032
  • Pal RR, Khardenavis AA, Purohit HJ. Identification and monitoring of nitrification and denitrification genes in Klebsiella pneumoniae EGD-HP19-C for its ability to perform heterotrophic nitrification and aerobic denitrification. Funct Integr Genomics. 2015;15(1):63–76. doi:10.1007/s10142-014-0406-z
  • Sellami F, Hachicha S, Chtourou M, et al. Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresour Technol. 2008;99:6900–6907. doi:10.1016/j.biortech.2008.01.055
  • Kulikowska D. Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Manage (Tucson, Ariz). 2016;49:196–203. doi:10.1016/j.wasman.2016.01.005
  • Nguyen TP, Koyama M, Nakasaki K. Effects of oxygen supply rate on organic matter decomposition and microbial communities during composting in a controlled lab-scale composting system. Waste Manage. 2022;153:275–282. doi:10.1016/j.wasman.2022.09.004
  • Sun L, Tao Z, Liu X, et al. Effects of phosphate-solubilizing bacteria on phosphorus components, humus and bacterial community metabolism during spent mushroom substrate composting. Environ Technol Inno. 2023;32:103341. doi:10.1016/j.eti.2023.103341
  • Zhang S, Wang J, Chen X, et al. Industrial-scale food waste composting: effects of aeration frequencies on oxygen consumption,: enzymatic activities and bacterial community succession. Bioresour Technol. 2021;320:124357. doi:10.1016/j.biortech.2020.124357
  • Ai YJ, Li FP, Gu HH, et al. Combined effects of green manure returning and addition of sewage sludge compost on plant growth and microorganism communities in gold tailings. Environ Sci Pollut Res Int 2020;27(25):31686–31698. doi:10.1007/s11356-020-09118-z
  • Koeck DE, Pechtl A, Zverlov VV, et al. Genomics of cellulolytic bacteria. Curr Opin Biotechnol. 2014;29:171–183. doi:10.1016/j.copbio.2014.07.002
  • Sun C, Wei Y, Kou J, et al. Improve spent mushroom substrate decomposition, bacterial community and mature compost quality by adding cellulase during composting. J Clean Prod. 2021;299:126928. doi:10.1016/j.jclepro.2021.126928
  • Huang Y, Wen L, Zhang L, et al. Community-integrated multi-omics facilitates the isolation of an organohalide dehalogenation microorganism. Innovation. 2023;4:100355.
  • Wang K, Zhou C, Zhou H, et al. Comparison on biological nutrient removal and microbial community between full-scale anaerobic/anoxic/aerobic process and its upgrading processes. Bioresour Technol. 2023;374:128757. doi:10.1016/j.biortech.2023.128757
  • Kojima H, Watanabe T, Fukui M. Sulfuricaulis limicola gen. nov., sp. nov., a sulfur oxidizer isolated from a lake. Int J Syst Evol Microbiol. 2016;66:266–270. doi:10.1099/ijsem.0.000709
  • Kumar S, Herrmann M, Thamdrup B, et al. Nitrogen loss from pristine carbonate-rock aquifers of the hainich critical zone exploratory (Germany) is primarily driven by chemolithoautotrophic anammox processes. Front Microbiol. 2017;8:1951. doi:10.3389/fmicb.2017.01951
  • Qin H, Xing X, Tang Y, et al. Soil moisture and activity of nitrite- and nitrous oxide-reducing microbes enhanced nitrous oxide emissions in fallow paddy soils. Biol Fertil Soils. 2020;56:53–67. doi:10.1007/s00374-019-01403-5
  • Liu Y, Wang Y, Song X, et al. The evolution of nitrogen transformation microorganism consortium under continued manganese domestication conditions. Sci Total Environ. 2023;899(15):165656. doi:10.1016/j.scitotenv.2023.165656
  • Li Y, Zhou M, Li C, et al. Inoculating indoleacetic acid bacteria promotes the enrichment of halotolerant bacteria during secondary fermentation of composting. J. Environ. Manage. 2022;322:116021. doi:10.1016/j.jenvman.2022.116021
  • Liu Y, Wang W, Xu J, et al. Evaluation of compost,: vegetable and food waste as amendments to improve the composting of NaOH/NaClO-contaminated poultry manure. PLoS One. 2018;13(10):205112.
  • Martins GL, de Souza AJ, Mendes AM, et al. Physicochemical and bacterial changes during composting of vegetable and animal-derived agro-industrial wastes. Bioresour Technol. 2023;376:128842. doi:10.1016/j.biortech.2023.128842

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.