572
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling

, ORCID Icon, ORCID Icon &
Pages 8273-8292 | Received 27 Jun 2021, Accepted 15 Oct 2021, Published online: 29 Oct 2021
 

Abstract

The purpose of this investigation is to develop an optimal model to flood susceptibility mapping in the Kan watershed, Tehran, Iran. Therefore, in this study, three Bayesian optimization hyper-parameter algorithms including Upper confidence bound (UCB), Probability of improvement (PI) and Expected improvement (EI) in order to Extreme Gradient Boosting (XGB) machine learning model optimization and Extreme randomize tree (ERT) model for modeling flood hazard were used. In order to perform flood susceptibility mapping, 118 historic flood locations were identified and analyzed using 17 geo-environmental explanatory variables to predict flooding susceptibility. Flood locations data were divided into 70% for training and 30% for testing of models developed. The receiver operating characteristic (ROC) curve parameters were used to evaluate the performance of the models. The evaluation results based on the criterion area under curve (AUC) in the testing stage showed that the ERT and XGB models have efficiencies of 91.37% and 91.95%, respectively. The evaluation of the efficiency of Bayesian hyperparameters optimization methods on the XGB model also showed that these methods increase the efficiency of the XGB model, so that the model efficiency using these methods EI-XGB, POI-XGB and UCB-XGB based on the AUC in the testing stage were 95.89%, 96.87% and 96.38%, respectively. The results of the relative importance of the five models shows that the variables of elevation and distance from the river are the significant compared to other variables in predicting flood hazard in the Kan watershed.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.