572
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling

, ORCID Icon, ORCID Icon &
Pages 8273-8292 | Received 27 Jun 2021, Accepted 15 Oct 2021, Published online: 29 Oct 2021

References

  • Alin A. 2010. Multicollinearity. WIREs Comp Stat. 2(3):370–374.
  • Abedi R, Costache R, Shafizadeh-Moghadam H, Pham QB. 2021. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 36:1–18.
  • Asare-Kyei D, Forkuor G, Venus V. 2015. Modeling flood hazard zones at the sub-district level with the rational model integrated with GIS and remote sensing approaches. Water. 7(12):3531–3564.
  • Band SS, Janizadeh S, Chandra Pal S, Saha A, Chakrabortty R, Melesse AM, Mosavi A. 2020. Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sens. 12(21):3568.
  • Bui DT, Tsangaratos P, Ngo P-TT, Pham TD, Pham BT. 2019. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Sci Total Environ. 668:1038–1054.
  • Chatzichristaki C, Stefanidis S, Stefanidis P, Stathis D. 2015. Analysis of the flash flood in Rhodes Island (South Greece) on 22 November 2013. Silva. 16:1.
  • Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, et al. 2015. Xgboost: extreme gradient boosting. R Packag Version 04-2. 1(4):1–4.
  • Chen Y, Huang A, Wang Z, Antonoglou I, Schrittwieser J, Silver D, de Freitas N. 2018. Bayesian optimization in alphago. arXiv preprint arXiv:1812.06855.
  • Chen W, Lei X, Chakrabortty R, Pal SC, Sahana M, Janizadeh S. 2021. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. J Environ Manage. 284:112015.
  • Costache R, Pham QB, Sharifi E, Linh NTT, Abba SI, Vojtek M, Vojteková J, Nhi PTT, Khoi DN. 2019. Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and gis techniques. Remote Sens. 12(1):106.
  • Das B, Pal SC. 2019. Combination of GIS and fuzzy-AHP for delineating groundwater recharge potential zones in the critical Goghat-II block of West Bengal, India. HydroResearch. 2:21–30.
  • Das B, Pal SC, Malik S. 2018. Assessment of flood hazard in a riverine tract between Damodar and Dwarkeswar River, Hugli District, West Bengal, India. Spat Inf Res. 26(1):91–101.
  • Das B, Pal SC, Malik S, Chakrabortty R. 2019. Living with floods through geospatial approach: a case study of Arambag CD Block of Hugli District, West Bengal, India. SN Appl Sci. 1(4):1–10.
  • Dodangeh E, Panahi M, Rezaie F, Lee S, Bui DT, Lee C-W, Pradhan B. 2020. Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. J Hydrol. 590:125423.
  • Eini M, Kaboli HS, Rashidian M, Hedayat H. 2020. Hazard and vulnerability in urban flood risk mapping: Machine learning techniques and considering the role of urban districts. Int J Disaster Risk Reduct. 50:101687.
  • El-Magd SAA, Pradhan B, Alamri A. 2021. Machine learning algorithm for flash flood prediction mapping in Wadi El-Laqeita and surroundings, Central Eastern Desert, Egypt. Arab J Geosci. 14(4):1–14.
  • Georganos S, Grippa T, Vanhuysse S, Lennert M, Shimoni M, Wolff E. 2018. Very high resolution object-based land use–land cover urban classification using extreme gradient boosting. IEEE Geosci Remote Sensing Lett. 15(4):607–611.
  • Geurts P, Ernst D, Wehenkel L. 2006. Extremely randomized trees. Mach Learn. 63(1):3–42.
  • Goetz M, Weber C, Bloecher J, Stieltjes B, Meinzer H-P, Maier-Hein K. 2014. Extremely randomized trees based brain tumor segmentation. Proceeding of BRATS challenge-MICCAI. 14:6–11.
  • Hamedianfar A, Gibril MBA, Hosseinpoor M, Pellikka PKE. 2020. Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images. Geocarto Int:1–19.
  • Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu A-X, Chen W, Kougias I, Kazakis N. 2018. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ. 621:1124–1141.
  • Hong H, Pradhan B, Sameen MI, Kalantar B, Zhu A, Chen W. 2018. Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach. Landslides. 15(4):753–772.
  • Hosseini FS, Choubin B, Mosavi A, Nabipour N, Shamshirband S, Darabi H, Haghighi AT. 2020. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method. Sci Total Environ. 711:135161.
  • Islam ARMT, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front. 12(3):101075.
  • Janizadeh S, Pal SC, Saha A, Chowdhuri I, Ahmadi K, Mirzaei S, Mosavi AH, Tiefenbacher JP. 2021. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. J Environ Manage. 298:113551.
  • Kalantar B, Ueda N, Saeidi V, Janizadeh S, Shabani F, Ahmadi K, Shabani F. 2021. Deep neural network utilizing remote sensing datasets for flood hazard susceptibility mapping in Brisbane, Australia. Remote Sensing. 13(13):2638.
  • Khajehei S, Ahmadalipour A, Shao W, Moradkhani H. 2020. A place-based assessment of flash flood hazard and vulnerability in the contiguous United States. Sci Rep. 10(1):1–12.
  • Klein A, Falkner S, Bartels S, Hennig P, Hutter F. 2017. Fast bayesian optimization of machine learning hyperparameters on large datasets. In: Artif Intell Stat. Proceedings of Machine Learning Research (PLMR), United States; 528–536.
  • Kourgialas NN, Karatzas GP. 2011. Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrol Sci J–J Des Sci Hydrol. 56(2):212–225.
  • Ma M, Zhao G, He B, Li Q, Dong H, Wang S, Wang Z. 2021. XGBoost-based method for flash flood risk assessment. J Hydrol. 598:126382.
  • Mahmoud SH, Gan TY. 2018. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J Clean Prod. 196:216–229.
  • Malik S, Pal SC. 2021. Potential flood frequency analysis and susceptibility mapping using CMIP5 of MIROC5 and HEC-RAS model: a case study of lower Dwarkeswar River. Eastern India. SN Appl Sci. 3(1):1–22.
  • Malik S, Pal SC, Chowdhuri I, Chakrabortty R, Roy P, Das B. 2020. Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sens Appl Soc Environ. 19:100343.
  • Mirzaei S, Vafakhah M, Pradhan B, Alavi SJ. 2021. Flood susceptibility assessment using extreme gradient boosting (EGB), Iran. Earth Sci Inform. 14(1):51–67.
  • Mosavi A, Golshan M, Janizadeh S, Choubin B, Melesse AM, Dineva AA. 2020. Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: a priority assessment of sub-basins. Geocarto Int:1–20.
  • Myerson J, Green L, Warusawitharana M. 2001. Area under the curve as a measure of discounting. J Exp Anal Behav. 76(2):235–243.
  • Naghibi SA, Hashemi H, Berndtsson R, Lee S. 2020. Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors. J Hydrol. 589:125197.
  • Ngo P-TT, Pham TD, Nhu V-H, Le TT, Tran DA, Phan DC, Hoa PV, Amaro-Mellado JL, Bui DT. 2021. A novel hybrid quantum-PSO and credal decision tree ensemble for tropical cyclone induced flash flood susceptibility mapping with geospatial data. J Hydrol. 596:125682.
  • Panahi M, Dodangeh E, Rezaie F, Khosravi K, Van Le H, Lee M-J, Lee S, Pham BT. 2021. Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. Catena. 199:105114.
  • Paul SS, Li J, Li Y, Shen L. 2019. Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm. Geocarto Int. 36(4):1–13.
  • Petrović AM, Novković I, Kostadinov S. 2021. Hydrological analysis of the September 2014 torrential floods of the Danube tributaries in the Eastern Serbia. Nat Hazards. 108(1):1373.
  • Qu Y, Lin Z, Li H, Zhang X. 2019. Feature recognition of urban road traffic accidents based on GA-XGBoost in the context of big data. IEEE Access. 7:170106–170115.
  • Roy P, Pal SC, Chakrabortty R, Chowdhuri I, Malik S, Das B. 2020. Threats of climate and land use change on future flood susceptibility. J Clean Prod. 272:122757.
  • Shafapour Tehrany M, Shabani F, Neamah Jebur M, Hong H, Chen W, Xie X. 2017. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Nat Hazards Risk. 8(2):1538–1561.
  • Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM. 2016. Extreme gradient boosting as a method for quantitative structure-activity relationships. J Chem Inf Model. 56(12):2353–2360.
  • Snoek J, Larochelle H, Adams RP. 2012. Practical bayesian optimization of machine learning algorithms. arXiv preprint arXiv:1206.2944.
  • Sun D, Xu J, Wen H, Wang D. 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Eng Geol. 281:105972.
  • Talukdar S, Ghose B, Salam R, Mahato S, Pham QB, Linh NTT, Costache R, Avand M, et al. 2020. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stoch Environ Res Risk Assess. 34(12):2277–2300.
  • Tang Z, Yi S, Wang C, Xiao Y. 2018. Incorporating probabilistic approach into local multi-criteria decision analysis for flood susceptibility assessment. Stoch Environ Res Risk Assess. 32(3):701–714.
  • Tehrany MS, Kumar L, Shabani F. 2019. A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: Brisbane, Australia. PeerJ. 7:e7653.
  • Timofeev AV, Denisov VM. 2020. Machine learning based predictive maintenance of infrastructure facilities in the cryolithozone. In: Recent Dev Ind Control Syst Resil. United States: Springer; p. 49–74.
  • Vafakhah M, Loor SMH, Pourghasemi H, Katebikord A. 2020. Comparing performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping. Arab J Geosci. 13(11):417.
  • Van Campenhout J, Houbrechts G, Peeters A, Petit F. 2020. Return period of characteristic discharges from the comparison between partial duration and annual series, application to the Walloon Rivers (Belgium). Water. 12(3):792.
  • Wang Y, Fang Z, Hong H, Peng L. 2020. Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol. 582:124482.
  • Wu J, Chen X-Y, Zhang H, Xiong L-D, Lei H, Deng S-H. 2019. Hyperparameter optimization for machine learning models based on Bayesian optimization. J Electron Sci Technol. 17(1):26–40.
  • Xenochristou M, Hutton C, Hofman J, Kapelan Z. 2020. Water demand forecasting accuracy and influencing factors at different spatial scales using a Gradient Boosting Machine. Water Resour Res. 56(8):e2019WR026304.
  • Yang R-M, Zhang G-L, Liu F, Lu Y-Y, Yang F, Yang F, Yang M, Zhao Y-G, Li D-C. 2016. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol Indic. 60:870–878.
  • Yariyan P, Janizadeh S, Van Phong T, Nguyen HD, Costache R, Van Le H, Pham BT, Pradhan B, Tiefenbacher JP. 2020. Improvement of best first decision trees using bagging and dagging ensembles for flood probability mapping. Water Resour Manag. 34(9):3037–3053.
  • Yarveicy H, Ghiasi MM. 2017. Modeling of gas hydrate phase equilibria: Extremely randomized trees and LSSVM approaches. J Mol Liq. 243:533–541.
  • Zhao G, Pang B, Xu Z, Peng D, Xu L. 2019. Assessment of urban flood susceptibility using semi-supervised machine learning model. Sci Total Environ. 659:940–949.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.