Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 17
238
Views
2
CrossRef citations to date
0
Altmetric
Articles

CFD-VOF-DPM numerical simulation of enhanced boiling heat transfer characteristics of microencapsulated phase change material slurry

, , , &
Pages 2869-2882 | Received 23 Aug 2022, Accepted 28 Apr 2023, Published online: 02 Jul 2023
 

Abstract

Two-dimensional (2D) computational fluid dynamics (CFD) simulations of water-based microencapsulated phase change material suspension (MPCMS) on the flow boiling in a gas–liquid–solid flow system was performed with volume of fluid (VOF) method and discrete particle model (DPM). The Lagrangian particles were linked to the Eulerian phases through the interchange terms such as the drag force in the respective momentum equations. Influences of particle properties including mass fraction and core phase transition temperature, fluid properties including liquid surface tension force and viscosity, detachment time and rise velocity of gas bubbles and particle entrainment in the gas–liquid–solid flow under ambient conditions were numerically investigated. The effects of particles on bubble nucleation, growth and rupture during boiling were studied by visualization. The results show that MPCM can enhance the boiling heat transfer ability of the base liquid. The maximum heat transfer enhancement rate of MPCMS (28 °C) is 4.8%, the maximum heat transfer enhancement rate of MPCMS (90 °C) is 5.1%, the maximum heat transfer enhancement rate of MPCMS (110 °C) can reach 6.7%. MPCM can promote the formation of new bubbles and the rupture of large bubbles, reduce the departure diameter of bubbles, and enhance the boiling heat transfer capacity of the base liquid. The MPCM with core phase change temperature higher than the boiling temperature of base fluid has the best enhancement effect. Through the combination of numerical simulation methods such as VOF and DPM, the complex phase transition heat transfer process of gas-liquid-solid particle coupling of latent thermal functional thermal fluid can be accurately simulated. The work lays a foundation for further explorations on the gas–liquid–solid flows and possible industry applications.

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20200016) and the National Natural Science Foundation of China (Grant No. 52006218).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.