Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 17
238
Views
2
CrossRef citations to date
0
Altmetric
Articles

CFD-VOF-DPM numerical simulation of enhanced boiling heat transfer characteristics of microencapsulated phase change material slurry

, , , &
Pages 2869-2882 | Received 23 Aug 2022, Accepted 28 Apr 2023, Published online: 02 Jul 2023

References

  • A. R. Sarhan, J. Naser and G. Brooks, “CFD analysis of solid particles properties effect in three-phase flotation column,” Sep. Purif. Technol., vol. 185, pp. 1–9, 2017. DOI: 10.1016/j.seppur.2017.04.042.
  • A. R. Sarhan, J. Naser and G. Brooks, “CFD simulation on influence of suspended solid particles on bubbles’ coalescence rate in flotation cell,” Int. J. Miner. Process, vol. 146, pp. 54–64, 2016. DOI: 10.1016/j.minpro.2015.11.014.
  • L. Chai, R. Shaukat, L. Wang and H. S. Wang, “A review on heat transfer and hydrodynamic characteristics of nano/microencapsulated phase change slurry (N/MPCS) in mini/microchannel heat sinks,” Appl. Therm. Eng., vol. 135, pp. 334–349, 2018. DOI: 10.1016/j.applthermaleng.2018.02.068.
  • A. Giro Paloma, et al., “Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review,” Renew. Sustain. Energy Rev., vol. 53, pp. 1059–1075, 2016. DOI: 10.1016/j.rser.2015.09.040.
  • W. Fu, et al., “Thermophysical properties of n-tetradecane@polystyrene-silica composite nanoencapsulated phase change material slurry for cold energy storage,” Energy Buildings, vol. 136, pp. 26–32, 2017. DOI: 10.1016/j.enbuild.2016.12.001.
  • A. R. Sarhan, J. Naser and G. Brooks, “Effects of particle size and concentration on bubble coalescence and froth formation in a slurry bubble column,” Particuology, vol. 36, pp. 82–95, 2018. DOI: 10.1016/j.partic.2017.04.011.
  • C. J. Ho, W. C. Chen and W. M. Yan, “Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3 nanoparticles and/or MEPCM particles,” Int. J. Heat Mass Transfer, vol. 69, pp. 293–299, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.030.
  • C. J. Ho, W. C. Chen and W. M. Yan, “Experiment on thermal performance of water-based suspensions of Al2O3 nanoparticles and MEPCM particles in a minichannel heat sink,” Int. J. Heat Mass Transfer., vol. 69, pp. 276–284, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.034.
  • C. J. Ho, J. C. Liao, C. H. Li, W. M. Yan and M. Amani, “Experimental study of cooling performance of water-based alumina nanofluid in a minichannel heat sink with MEPCM layer embedded in its ceiling,” Int. Commun. Heat Mass., vol. 103, pp. 1–6, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.02.001.
  • J. A. Howard and P. A. Walsh, “An experimental investigation of heat transfer enhancement mechanisms in microencapsulated phase-change material slurry flows,” Heat Transfer Eng., vol. 34, no. 2-3, pp. 223–234, 2013. DOI: 10.1080/01457632.2013.703558.
  • A. R. Sarhan, J. Naser and G. Brooks, “Bubbly flow with particle attachment and detachment – A multi-phase CFD study,” Sep. Sci. Technol., vol. 53, no. 1, pp. 181–197, 2018. DOI: 10.1080/01496395.2017.1375525.
  • S. Kondle, J. L. Alvarado and C. Marsh, “Laminar flow forced convection heat transfer behavior of a phase change material fluid in microchannels,” J. Heat Trans., vol. 135, no. 5, pp. 69–78, 2013. DOI: 10.1115/1.4023221.
  • Y. Zhang and A. Faghri, “Analysis of forced convection heat transfer in microencapsulated phase change material suspensions,” J. Thermophys. Heat Tr., vol. 9, no. 4, pp. 727–732, 1995. DOI: 10.2514/3.731.
  • S. Kuravi, et al., “Numerical investigation of flow and heat transfer performance of nano-encapsulated phase change material slurry in microchannels,” J. Heat Trans., vol. 131, no. 6, pp. 062901, 2009. DOI: 10.1115/1.3084123.
  • R. Sabbah, M. M. Farid and S. Al-Hallaj, “Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study,” Appl. Therm. Eng., vol. 29, no. 2-3, pp. 445–454, 2009. DOI: 10.1016/j.applthermaleng.2008.03.027.
  • E. L. Alisetti and S. K. Roy, “Forced convection heat transfer to phase change material slurries in circular ducts,” J. Thermophys. Heat Tr., vol. 14, no. 1, pp. 115–118, 2000. DOI: 10.2514/2.6499.
  • A. R. Sarhan, J. Naser and G. Brooks, “Bubble column CFD model with effects of forced oscillations on bubble dynamics,” Chem. Eng. Technol., vol. 44, no. 6, pp. 1111–1120, 2021. DOI: 10.1002/ceat.202000533.
  • A. R. Sarhan, J. Naser and G. Brooks, “Numerical simulation of froth formation in aerated slurry coupled with population balance modelling,” Can. Metall. Quart., vol. 56, no. 1, pp. 45–57, 2017. DOI: 10.1080/00084433.2016.1268771.
  • A. R. Sarhan, J. Naser and G. Brooks, “CFD model simulation of bubble surface area flux in flotation column reactor in presence of minerals,” Int. J. Mining Sci. Technol., vol. 28, no. 6, pp. 999–1007, 2018. DOI: 10.3969/j.issn.2095-2686.2018.06.019.
  • S. S. Rabha and V. V. Buwa, “Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids,” Chem. Eng. Sci., vol. 65, no. 1, pp. 527–537, 2010. DOI: 10.1016/j.ces.2009.06.061.
  • A. A. Abed, A. Bonanos and F. Moukalled, “Numerical simulation of flow boiling heat transfer and pressure drop in a corrugated plate heat exchanger at low mass flux and vapor quality conditions,” Numer. Heat Tr. A-Appl., vol. 80, no. 11, pp. 556–578, 2021. DOI: 10.1080/10407782.2021.1959835.
  • L. Zhang, et al., “Numerical simulation on critical heat flux of downward-facing surface with modified wall boiling model,” Numer. Heat Tr. A-Appl., pp. 1–24, Oct 2022. DOI: 10.1080/10407782.2022.2136318.
  • N. Patra, et al., “Flow visualization in dilute oxide based nanofluid boiling,” Int. J. Heat Mass Transfer, vol. 135, pp. 331–344, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.