185
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Effects of π‐π Interactions on the Separation of PAHs on Phenyl‐Type Stationary Phases

, , &
Pages 324-347 | Received 22 Jun 2007, Accepted 24 Aug 2007, Published online: 20 Dec 2007
 

Abstract

Phenyl‐type stationary phase surfaces are useful for the separation of highly aromatic compounds because of the extensive intermolecular forces between the π‐electron systems. For this reason, we studied the retention behaviour and selectivity of polycyclic aromatic hydrocarbons (PAHs) on Synergi polar‐RP and Cosmosil 5PBB chromatography columns using methanol/water, acetonitrile/water, benzene spiked (0.5%) methanol/water, and benzene spiked (0.5%) acetonitrile/water mobile phases. These four solvent systems were employed because π‐π. interactions between the aromatic solute (i.e., PAH) and the aromatic stationary phase should be inhibited in mobile phases that are also π electron rich, and hence a competitor for the analyte. Our results showed that the acetonitrile mobile phases were substantially stronger eluents than the methanol mobile phases, which was consistent with the premise that retention of aromatic compounds is sensitive to π‐π. interactions. Aside from changes in absolute retention, selectivity of the PAHs was also generally greater in methanol rather than acetonitrile mobile phases because the methanol did not attenuate the π‐π. bonding interactions between the PAH and the stationary phase; but, despite this, the retention behaviour of the Synergi polar‐RP column was similar to that observed on C18 columns. The excessive retention times of the Cosmosil 5PBB column were decreased dramatically when acetonitrile was used as the mobile phase; however, selectivity between structural isomers was lost.

Acknowledgments

One of the Authors (SK) gratefully acknowledges the receipt of a University of Western Sydney Postgraduate Research Award and a University of Western Sydney Publications Fellowship. This work was supported in part by a UWS Internal Research Award.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.