469
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A universal spectral analytical method for digital terrain modeling

&
Pages 2506-2528 | Received 14 Feb 2016, Accepted 08 May 2016, Published online: 25 May 2016
 

ABSTRACT

There are three major mathematical problems in digital terrain analysis: (1) interpolation of digital elevation models (DEMs); (2) DEM generalization and denoising; and (3) computation of morphometric variables through calculating partial derivatives of elevation. Traditionally, these three problems are solved separately by means of procedures implemented in different methods and algorithms. In this article, we present a universal spectral analytical method based on high-order orthogonal expansions using the Chebyshev polynomials of the first kind with the subsequent Fejér summation. The method is intended for the processing of regularly spaced DEMs within a single framework including DEM global approximation, denoising, generalization, as well as calculating the partial derivatives of elevation and local morphometric variables.

The method is exemplified by a portion of the Great Rift Valley and central Kenyan highlands. A DEM of this territory (the matrix 480 × 481 with a grid spacing of 30″) was extracted from the global DEM SRTM30_PLUS. We evaluated various sets of expansion coefficients (up to 7000) to approximate and reconstruct DEMs with and without the Fejér summation. Digital models of horizontal and vertical curvatures were computed using the first and second partial derivatives of elevation derived from the reconstructed DEMs. To evaluate the approximation accuracy, digital models of residuals (differences between the reconstructed DEMs and the initial one) were calculated. The test results demonstrated that the method is characterized by a good performance (i.e., a distinct monotonic convergence of the approximation) and a high speed of data processing. The method can become an effective alternative to common techniques of DEM processing.

Acknowledgement

The study was supported by RFBR grant 15-07-02484. The authors are grateful to Dr. I. Evans for the detailed review of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Russian Foundation for Basic Research (RFBR) [15-07-02484].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.