469
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A universal spectral analytical method for digital terrain modeling

&
Pages 2506-2528 | Received 14 Feb 2016, Accepted 08 May 2016, Published online: 25 May 2016

References

  • Arrell, K., et al., 2008. Spectral filtering as a method of visualising and removing striped artefacts in digital elevation data. Earth Surface Processes and Landforms, 33 (6), 943–961. doi:10.1002/esp.1597
  • Becker, J.J., et al., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32 (4), 355–371. doi:10.1080/01490410903297766
  • Bergbauer, S., Mukerji, T., and Hennings, P., 2003. Improving curvature analyses of deformed horizons using scale-dependent filtering techniques. American Association of Petroleum Geologists Bulletin, 87 (8), 1255–1272. doi:10.1306/0319032001101
  • Bjørke, J.T. and Nilsen, S., 2003. Wavelets applied to simplification of digital terrain models. International Journal of Geographical Information Science, 17 (7), 601–621. doi:10.1080/1365881031000135500
  • Britenkov, A.K. and Pankratov, A.N., 2004. Stable algorithms of adaptive approximation for acoustic signals description by orthogonal polynomials. Physics of Wave Phenomena, 12 (3), 168–174.
  • Chorley, R.J. and Haggett, P., 1965. Trend-surface mapping in geographical research. Transactions of the Institute of British Geographers, 37, 47–67. doi:10.2307/621689
  • Chorowicz, J., 2005. The East African rift system. Journal of African Earth Sciences, 43 (1–3), 379–410. doi:10.1016/j.jafrearsci.2005.07.019
  • Clenshaw, C.W. and Hayes, J.G., 1965. Curve and surface fitting. IMA Journal of Applied Mathematics, 1 (2), 164–183. doi:10.1093/imamat/1.2.164
  • Courant, R. and Hilbert, D., 1989. Methods of mathematical physics. Vol. 1, New York, NY: Wiley.
  • Davis, J.C., 2002. Statistics and data analysis in geology. 3rd ed. New York, NY: Wiley.
  • Dedus, A.F., et al., 1995. Generalized spectral-analytic method. Part I. Theoretical foundations. Proceedings of SPIE, 2363, 109–112. doi:10.1117/12.199620
  • Dedus, F.F. et al., 1999. Generalized spectral analytical method for data set processing. Problems of image analysis and pattern recognition. Moscow: Mashinostroenie. (in Russian, with English abstract).
  • Dedus, F.F. et al., 2004. Classical orthogonal bases in problems of analytical description and processing of information signals. Moscow: Moscow State University Press (in Russian).
  • Dedus, F.F., Makhortykh, S.A., and Ustinin, M.N., 1995. Generalized spectral-analytic method. Part II. Applications. Proceedings of SPIE, 2363, 113–118. doi:10.1117/12.199621
  • Dedus, F.F., Makhortykh, S.A., and Ustinin, M.N., 2002. Application of the generalized spectral-analytic method in information problems. Pattern Recognition and Image Analysis, 12 (4), 429–437.
  • Evans, I.S., 1979. Statistical characterization of altitude matrices by computer. An integrated system of terrain analysis and slope mapping. The final report on grant DA-ERO-591-73-G0040. University of Durham.
  • Evans, I.S., 1980. An integrated system of terrain analysis and slope mapping. Zeitschrift für Geomorphologie, Suppl, 36, 274–295.
  • Evans, I.S., 2013. Land surface derivatives: History, calculation and further development. In: Proceedings of Geomorphometry 2013, 16–20 October 2013 Nanjing, paper #K-3, http://geomorphometry.org/Evans2013
  • Farr, T.G., et al., 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45 (2), RG2004. doi:10.1029/2005RG000183
  • Florinsky, I.V., 1998. Derivation of topographic variables from a digital elevation model given by a spheroidal trapezoidal grid. International Journal of Geographical Information Science, 12 (8), 829–852. doi:10.1080/136588198241527
  • Florinsky, I.V., 2002. Errors of signal processing in digital terrain modelling. International Journal of Geographical Information Science, 16 (5), 475–501. doi:10.1080/13658810210129139
  • Florinsky, I.V., 2009. Computation of the third-order partial derivatives from a digital elevation model. International Journal of Geographical Information Science, 23 (2), 213–231. doi:10.1080/13658810802527499
  • Florinsky, I.V., 2012. Digital terrain analysis in soil science and geology. Amsterdam: Academic Press.
  • Florinsky, I.V. and Pankratov, A.N., 2015. Digital terrain modeling with orthogonal polynomials. Machine Learning and Data Analysis, 1 (12), 1647–1659. doi:10.21469/22233792.1.12.01
  • Fox, L. and Parker, I.B., 1968. Chebyshev polynomials in numerical analysis. London: Oxford University Press.
  • Gallant, J.C. and Hutchinson, M.F., 2011. A differential equation for specific catchment area. Water Resources Research, 47 (5), W05535. doi:10.1029/2009WR008540
  • Gautschi, W., 2004. Orthogonal polynomials: computation and approximation. Oxford: Oxford University Press.
  • Golyandina, N.E., Usevich, K.D., and Florinsky, I.V., 2007. Filtering of digital terrain models by two-dimensional singular spectrum analysis. International Journal of Ecology and Development, 8 (F07), 81–94.
  • Harrison, J.M. and Lo, C.-P., 1996. PC-based two-dimensional discrete Fourier transform programs for terrain analysis. Computers & Geosciences, 22 (4), 419–424. doi:10.1016/0098-3004(95)00104-2
  • Heifetz, B.S., 1964. Approximation of the topographic surface by the Chebyshev orthogonal polynomials. Izvestiya Vuzov, Geodesia i Aerofotosyemka, 2, 78–86 (in Russian).
  • Hengl, T. and Reuter, H.I., eds., 2009. Geomorphometry: concepts, software, applications. Amsterdam: Elsevier.
  • Hutchinson, M.F., 2008. Adding the Z dimension. In: J.P. Wilson and A.S. Fotheringham, eds. The handbook of geographic information science. Oxford: Blackwell, 144–168. doi:10.1002/9780470690819.ch8
  • Jerri, A.J., 1998. The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations. Boston, MA: Kluwer. doi:10.1007/978-1-4757-2847-7
  • Kulikova, L.I., 2007. Spectral analytical methods for data processing and pattern recognition. Thesis (PhD). Computing Centre, Russian Academy of Sciences (in Russian).
  • Li, Z., Zhu, Q., and Gold, C., 2005. Digital terrain modeling: principles and methodology. New York, NY: CRC Press.
  • MacMillan, R.A. and Shary, P.A., 2009. Landforms and landform elements in geomorphometry. In: T. Hengl and H.I. Reuter, eds. Geomorphometry: concepts, software, applications. Amsterdam: Elsevier, 227–254. doi:10.1016/S0166-2481(08)00009-3
  • McCullagh, M.J., 1988. Terrain and surface modelling systems: theory and practice. The Photogrammetric Record, 12 (72), 747–779. doi:10.1111/j.1477-9730.1988.tb00627.x
  • Minár, J., et al., 2013. Third-order geomorphometric variables (derivatives): definition, computation and utilization of changes of curvatures. International Journal of Geographical Information Science, 27 (7), 1381–1402. doi:10.1080/13658816.2013.792113
  • Mitas, L. and Mitasova, H., 1999. Spatial interpolation. In: P. Longley et al., eds. Geographical information systems: principles, techniques, management and applications. 2nd abr ed. Hoboken, NJ: Wiley, 481–492.
  • Mitášová, H. and Mitáš, L., 1993. Interpolation by regularized spline with tension: I. Theory and implementation. Mathematical Geology, 25 (6), 641–655. doi:10.1007/BF00893171
  • Pankratov, A.N., 2004a. Algebraic operations over orthogonal series in problems of data processing. Thesis (PhD). Institute of Mathematical Problems of Biology, Russian Academy of Sciences (in Russian).
  • Pankratov, A.N., 2004b. On the implementation of algebraic operations on orthogonal function series. Computational Mathematics and Mathematical Physics, 44 (12), 2017–2023.
  • Pankratov, A.N. et al., 2011. Algorithms of spectral analysis using Intel IPP and MKL libraries. Moscow: Intel – Moscow State University. (in Russian).
  • Pankratov, A.N. and Britenkov, A.K., 2004. Generalized spectral analytical method: problems of description of digital data by families of orthogonal polynomials. Vestnik of the Lobachevsky Nizhni Novgorod State University, Series Radiophysics, 1 (2), 5–14. (in Russian)
  • Pankratov, A.N. and Kulikova, L.I., 2006. On the derivatives calculation under uniform and mean square approximation of signals. In: Computer applications in scientific researches. Proceedings of the IVTN-2006 session. Moscow: NC Group /NVK VIST, abstract #0606, http://www.ivtn.ru/2006/physmath/enter/t_pdf/tp06_06.pdf (in Russian).
  • Papo, H.B. and Gelbman, E., 1984. Digital terrain models for slopes and curvatures. Photogrammetric Engineering and Remote Sensing, 50 (6), 695–701.
  • Press, W.H. et al., 1992. Numerical recipes in C. The art of scientific computing. 2nd ed. Cambridge: Cambridge University Press.
  • Rivlin, T.J., 1974. The Chebyshev polynomials. New York, NY: Wiley.
  • Sandwell, D.T., Smith, W.H.F., and Becker, J.J., 2008. SRTM30_PLUS V11. San Diego, CA: Scripps Institution of Oceanography, University of California. ftp://topex.ucsd.edu/pub/srtm30_plus/
  • Schut, G.H., 1976. Review of interpolation methods for digital terrain models. Canadian Surveyor, 30 (5), 389–412.
  • Segu, W.P., 1985. Terrain approximation by fixed grid polynomial. The Photogrammetric Record, 11 (65), 581–591. doi:10.1111/j.1477-9730.1985.tb00525.x
  • Shary, P.A., 1995. Land surface in gravity points classification by a complete system of curvatures. Mathematical Geology, 27 (3), 373–390. doi:10.1007/BF02084608
  • Shary, P.A., Sharaya, L.S., and Mitusov, A.V., 2002. Fundamental quantitative methods of land surface analysis. Geoderma, 107 (1–2), 1–32. doi:10.1016/S0016-7061(01)00136-7
  • Tetuev, R.K. and Dedus, F.F., 2007. Classical orthogonal polynomials. Application to data processing problems. Pushchino: Institute of Mathematical Problems of Biology, Russian Academy of Sciences (in Russian).
  • Tobler, W.R., 1969. Geographical filters and their inverses. Geographical Analysis, 1 (3), 234–253. doi:10.1111/j.1538-4632.1969.tb00621.x
  • Van Rossel, J., 1972. Digital hypsographic map compilation. Photogrammetric Engineering, 38 (11), 1106–1116.
  • Watson, D., 1992. Contouring: a guide to the analysis and display of spatial data. Oxford: Pergamon Press.
  • Wilson, J.P. and Gallant, J.C., eds., 2000. Terrain analysis: principles and applications. New York, NY: Wiley.
  • Wood, J.D., 1996. The geomorphological characterisation of digital elevation models. Thesis (PhD). University of Leicester.
  • Wu, F., 2003. Scale-dependent representations of relief based on wavelet analysis. Geo-Spatial Information Science, 6 (1), 66–69. doi:10.1007/BF02826705
  • Yagodina, L.L., 1972. Modelling of the topographic field by the Chebyshev orthogonal polynomials. Vestnik of the Leningrad State University, Geographical Series, 24 (4), 136–142 (in Russian, with English abstract).
  • Zevenbergen, L.W. and Thorne, C.R., 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12 (1), 47–56. doi:10.1002/esp.3290120107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.