1,387
Views
28
CrossRef citations to date
0
Altmetric
Scientific papers

Do all rejuvenators improve asphalt performance?

ORCID Icon, , , , & ORCID Icon
Pages 358-376 | Received 20 Mar 2020, Accepted 14 Sep 2020, Published online: 05 Oct 2020
 

Abstract

Reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) contain significant amounts of bitumen and their application in new constructions have been promoted as a sustainable practice in the pavement industry and to promote circular economy. However, this effort has faced challenges such as the aged bitumen’s inferior properties compared to the virgin counterpart and its unknown contribution to new pavements. To address the latter issue, liquid additives were used under the general title of rejuvenators. That poses an additional challenge associated with the lack of clear metrics to differentiate between softeners and rejuvenators. While revitalising aged asphalt binder to regain its desirable properties would be an ideal solution, progress in this area has been limited by a lack of understanding of rejuvenation mechanisms at the molecular level and the absence of representative test parameter(s) to evaluate both efficacy and durability of rejuvenators. In this study, both laboratory experiments and computer modelling were combined to not only compare efficacy of several rejuvenators, but also explain why some rejuvenators are effective while others are not. It was found that all studied rejuvenators have a softening effect on aged asphalt, but only a few of them revitalised aged asphalts’ physicochemical and rheological properties at the binder level. At the mixture level, a lower number of gyratory compaction and reduced rate of crack propagation were observed after the addition of high performing rejuvenators to the asphalt mixtures containing RAP. The reduction in crack propagation rate could be attributed to both enhanced blending between an aged and virgin bitumen and the revitalisation of aged bitumen properties. The latter phenomenon was explained at the molecular level based on the rejuvenator’s ability to interact with aged asphaltene molecules intercalating into and separating asphaltene nanoaggregates. Accordingly, this molecular-level phenomenon is reflected in two ways: an increase in crossover modulus and crossover frequency at the binder level, and a reduced crack propagation rate at the mixture level.

Acknowledgments

The authors acknowledge the support of the National Science Foundation (Award Numbers 1935723, and 1928795), which enabled the research. The authors would like to acknowledge the valuable help from Dr. Ramadan Salim, Daniel Oldham, Sk Faisal Kabir, and Samuel Brockman with ASU and Dr. Shahrzad Hosseinnezhad with NC A&T State University.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by National Science Foundation: [grant number: 1935723, and 1928795].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.