4,694
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Immunoinformatics-guided designing and in silico analysis of epitope-based polyvalent vaccines against multiple strains of human coronavirus (HCoV)

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1851-1871 | Received 21 Apr 2020, Accepted 08 Jan 2021, Published online: 15 Mar 2021
 

ABSTRACT

Objectives

The group of human coronaviruses (HCoVs) consists of some highly pathogenic viruses that have caused several outbreaks in the past. The newly emerged strain of HCoV, the SARS-CoV-2 is responsible for the recent global pandemic that has already caused the death of hundreds of thousands of people due to the lack of effective therapeutic options.

Methods

In this study, immunoinformatics methods were used to design epitope-based polyvalent vaccines which are expected to be effective against four different pathogenic strains of HCoV i.e., HCoV-OC43, HCoV-SARS, HCoV-MERS, and SARS-CoV-2.

Results

The constructed vaccines consist of highly antigenic, non-allergenic, nontoxic, conserved, and non-homologous T-cell and B-cell epitopes from all the four viral strains. Therefore, they should be able to provide strong protection against all these strains. Protein-protein docking was performed to predict the best vaccine construct. Later, the MD simulation and immune simulation of the best vaccine construct also predicted satisfactory results. Finally, in silico cloning was performed to develop a mass production strategy of the vaccine.

Conclusion

If satisfactory results are achieved in further in vivo and in vitro studies, then the vaccines designed in this study might be effective as preventative measures against the selected HCoV strains.

Acknowledgments

Authors are thankful to Swift Integrity Computational Lab, Dhaka, Bangladesh, a virtual platform of young researchers, for providing the support and tools.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Supplemental data

Supplemental data for this article can be accessed here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.