4,694
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Immunoinformatics-guided designing and in silico analysis of epitope-based polyvalent vaccines against multiple strains of human coronavirus (HCoV)

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1851-1871 | Received 21 Apr 2020, Accepted 08 Jan 2021, Published online: 15 Mar 2021

References

  • Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. Jama. 2020;323(8):pp.707–708.
  • Pyrc K, Berkhout B, Van der hoek L. Identification of new human coronaviruses. Expert Rev Anti Infect Ther. 2007;5(2):pp.245–253.
  • Banerjee A, Kulcsar K, Misra V, et al. Bats and coronaviruses. Viruses. 2019;11(1):p.41.
  • Sexton NR, Smith EC, Blanc H, et al. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J Virol. 2016;90(16):pp.7415–7428.
  • Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48: pp.1–100. Academic Press.
  • Jean A, Quach C, Yung A, et al. Severity and outcome associated with human coronavirus OC43 infections among children. Pediatr Infect Dis J. 2013Apr1;32(4):325–329.
  • de wit E, van doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nature Rev Microbiol. 2016;14(8):p.523.
  • https://www.worldometers.info/coronavirus/. Accessed on: 2020Apr04.
  • Bernheim A, Mei X, Huang M, et al. Chest ct findings in coronavirus disease-19 (covid-19): relationship to duration of infection. Radiology. 2020;295(3):p.200463.
  • Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):pp.130–137.
  • Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):pp.424–432.
  • Qian Z, Dominguez SR, Holmes KV. Role of the spike glycoprotein of human middle east respiratory syndrome coronavirus (mers-cov) in virus entry and syncytia formation. PloS One. 2013;8:10.
  • Li W, Hulswit RJ, Widjaja I, et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Nat Acad Sci. 2017;114(40):pp.E8508–E8517.
  • Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279(2):pp.371–374.
  • Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3:pp.237–261.
  • Bhattacharya M, Sharma AR, Patra P, et al. Development of epitope‐based peptide vaccine against novel coronavirus 2019 (SARS‐COV‐2): immunoinformatics approach. J Med Virol. 2020;92(6):pp.618631.
  • Doytchinova IA, Flower DR. Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine. 2007;25(5):pp.856866.
  • Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):p.4.
  • Chaudhri G, Quah BJ, Wang Y, et al. T cell receptor sharing by cytotoxic T lymphocytes facilitates efficient virus control. Proc Nat Acad Sci. 2009;106(35):pp.14984–14989.
  • Zhu J, Paul WE. Cd4 t cells: fates, functions, and faults. blood. J Am Soc Hematol. 2008;112(5):pp.1557–1569.
  • Vita R, Mahajan S, Overton JA, et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019;47(D1):pp.D339–D343.
  • Cooper MD. The early history of B cells. Nat Rev Immunol. 2015;15(3):pp.191–197.
  • Dimitrov I, Naneva L, Doytchinova I, et al. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics. 2014;30(6):pp.846–851.
  • Dimitrov I, Flower DR, Doytchinova I. AllerTOP-a server for in silico prediction of allergens. In BMC bioinformatics. BMC. 2013 April;Vol.14(No. 6):S4.
  • Gupta S, Kapoor P, Chaudhary K, et al. Consortium, osdd; raghava, gps in silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013;8:p.e73957.
  • Mehla K, Ramana J. Identification of epitope-based peptide vaccine candidates against enterotoxigenic escherichia coli: a comparative genomics and immunoinformatics approach. Mol Biosyst. 2016;12(3):pp.890–901.
  • Dhanda SK, Vir P, Raghava GP. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct. 2013;8(1):p.30.
  • Nagpal G, Usmani SS, Dhanda SK, et al. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci Rep. 2017;7(p):42851.
  • Möller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 2001;17(7):pp.646–653.
  • Adhikari UK, Rahman MM. Overlapping cd8+ and cd4+ t-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging rift valley fever virus using immunoinformatics approach. Infect Genet Evol. 2017;56:pp.75–91.
  • Bui HH, Sidney J, Dinh K, et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics. 2006;7(1):p.153.
  • Lamiable A, Thévenet P, Rey J, et al. PEPFOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016;44(W1):pp.W449–W454.
  • Shen Y, Maupetit J, Derreumaux P, et al. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput. 2014;10(10):pp.4745–4758.
  • Thévenet P, Shen Y, Maupetit J, et al. PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 2012;40(W1):pp.W288–W293.
  • Biovia DS, Berman HM, Westbrook J, et al. Dassault systèmes biovia, discovery studio visualizer, v. 17.2, san diego: dassault systèmes, 2016. J Chem Phys. 2000;10:pp.0021–9991.
  • Meza B, Ascencio F, Sierra-beltrán AP, et al. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against helicobacter pylori: an in silico approach. Infect Genet Evol. 2017;49:pp.309–317.
  • Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw. 2015;15(2):pp.51–57.
  • Arai R, Ueda H, Kitayama A, et al. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 2001;14(8):pp.529–532.
  • Saadi M, Karkhah A, Nouri HR. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infection. Gene Evolut. 2017;51:pp.227–234.
  • Gu Y, Sun X, Li B, et al. Vaccination with a paramyosinbased multi-epitope vaccine elicits significant protective immunity against trichinella spiralis infection in mice. Front Microbiol. 2017;8:p.1475.
  • Wen D, Foley SF, Hronowski XL, et al. Discovery and investigation of O-xylosylation in engineered proteins containing a (GGGGS) n linker. Anal Chem. 2013;85(9):pp.4805–4812.
  • Law HK, Cheung CY, Sia SF, et al. Toll-like receptors, chemokine receptors and death receptor ligands responses in SARS coronavirus infected human monocyte derived dendritic cells. BMC Immunol. 2009;10(1):p.35.
  • Rana A, Akhter Y. A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure based approach. Immunobiology. 2016;221(4):pp.544–557.
  • Hancock RE, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nature Rev Microbiol. 2012;10(4):pp.243–254.
  • Toussi DN, Massari P. Immune adjuvant effect of molecularly-defined toll-like receptor ligands. Vaccines (Basel). 2014;2(2):pp.323–353.
  • Funderburg N, Lederman MM, Feng Z, et al. Human β-defensin-3 activates professional antigen-presenting cells via toll-like receptors 1 and 2. Proc Nat Acad Sci. 2007;104(47):pp.1863118635.
  • Lee SJ, Shin SJ, Lee MH, et al. A potential protein adjuvant derived from mycobacterium tuberculosis rv0652 enhances dendritic cells-based tumor immunotherapy. PloS One. 2014;9:8.
  • Hajighahramani N, Nezafat N, Eslami M, et al. Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against staphylococcus aureus. infection. Gene Evolut. 2017;48:pp.83–94.
  • Pandey RK, Sundar S, Prajapati VK. Differential expression of miRNA regulates T cell differentiation and plasticity during visceral leishmaniasis infection. Front Microbiol. 2016;7:p.206.
  • Wu CY, Monie A, Pang X, et al. Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation. J Biomed Sci. 2010;17(1):p.88.
  • Magnan CN, Zeller M, Kayala MA, et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics. 2010;26(23):pp.2936–2943.
  • Saha S, Raghava GP. S: algPred: prediction of allergenic proteins and mapping of ige epitopes. Nucl Acids Res. 2006;34:pp.202–209.
  • Magnan CN, Randall A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics. 2009;25(17):pp.2200–2207.
  • Hebditch M, Carballo-amador MA, Charonis S, et al. Protein– sol: a web tool for predicting protein solubility from sequence. Bioinformatics. 2017;33(19):pp.30983100.
  • Buchan DW, Jones DT. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 2019;47(W1):pp.W402–W407.
  • Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292(2):pp.195–202.
  • Garnier J, Gibrat JF, Robson B. [32] GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996;266: pp.540–553. Academic Press.
  • Montgomerie S, Sundararaj S, Gallin WJ, et al. Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinformatics. 2006;7(1):p.301.
  • Källberg M, Wang H, Wang S, et al. Template-based protein structure modeling using the raptorx web server. Nat Protoc. 2012;7(8):p.1511.
  • Ma J, Wang S, Zhao F, et al. Protein threading using context-specific alignment potential. Bioinformatics. 2013;29(13):pp.i257–i265.
  • Peng J, Xu J. RaptorX: exploiting structure information for protein alignment by statistical inference. proteins. Struct Funct Bioinf. 2011;79(S10):pp.161–171.
  • Nugent T, Cozzetto D, Jones DT. Evaluation of predictions in the CASP10 model refinement category. Proteins Struct Funct Bioinf. 2014;82:pp.98–111.
  • Pandey RK, Bhatt TK, Prajapati VK. Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Sci Rep. 2018;8(1):pp.1–11.
  • Ko J, Park H, Heo L, et al. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40(W1):pp.W294–W297.
  • Morris AL, MacArthur MW, Hutchinson EG, et al. Stereochemical quality of protein structure coordinates. proteins: structure. Funct Bioinf. 1992;12(4):pp.345–364.
  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(suppl_2):pp.W407–W410.
  • Craig DB, Dombkowski AA. Disulfide by design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinformatics. 2013;14(1):p.346.
  • Petersen MTN, Jonson PH, Petersen SB. Amino acid neighbours and detailed conformational analysis of cysteines in proteins. Protein Eng. 1999;12(7):pp.535–548.
  • Stern LJ, Calvo-calle JM. HLA-DR: molecular insights and vaccine design. Curr Pharm Des. 2009;15(28):pp.3249–3261.
  • Thompson JM, Iwasaki A. Toll-like receptors regulation of viral infection and disease. Adv Drug Deliv Rev. 2008;60(7):pp.786–794.
  • Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014;426(6):pp.1246–1264.
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. in coronaviruses. Humana Press: New York, NY; 2015. pp.1–23.
  • Vajda S, Yueh C, Beglov D, et al. New additions to the c lus p ro server motivated by capri. proteins: structure. Funct Bioinf. 2017;85(3):pp.435–444.
  • Kozakov D, Hall DR, Xia B, et al. The cluspro web server for protein–protein docking. Nat Protoc. 2017;12(2):p.255.
  • Kozakov D, Beglov D, Bohnuud T, et al. How good is automated protein docking? Proteins: structure. Funct Bioinf. 2013;81(12):pp.2159–2166.
  • Weng G, Wang E, Wang Z, et al. HawkDock: a web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Res. 2019;47(W1):pp.W322–W330.
  • Hou T, Wang J, Li Y, et al. Assessing the performance of the mm/pbsa and mm/gbsa methods. 1. the accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2011;51(1):pp.69–82.
  • Feng T, Chen F, Kang Y, et al. HawkRank: a new scoring function for protein–protein docking based on weighted energy terms. J Cheminform. 2017;9(1):p.66.
  • Sun H, Li Y, Tian S, et al. Assessing the performance of mm/pbsa and mm/gbsa methods. 4. accuracies of mm/pbsa and mm/gbsa methodologies evaluated by various simulation protocols using pdbbind data set. Phys Chem Chem Phys. 2014;16(31):pp.16719–16729.
  • Ponomarenko J, Bui HH, Li W, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9(1):p.514.
  • Awan FM, Obaid A, Ikram A, et al. Mutation-structure-function relationship based integrated strategy reveals the potential impact of deleterious missense mutations in autophagy related proteins on hepatocellular carcinoma (HCC): A comprehensive informatics approach. Int J Mol Sci. 2017;18(1):p.139.
  • Prabhakar PK, Srivastava A, Rao KK, et al. Monomerization alters the dynamics of the lid region in campylobacter jejuni cstii: an md simulation study. J Biomol Struct Dyn. 2016;34(4):pp.778–791.
  • López-blanco JR, Aliaga JI, Quintana-ortí ES, et al. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res. 2014;42(W1):pp.W271–W276.
  • Lopéz-blanco JR, Garzón JI, Chacón P. iMod: multipurpose normal mode analysis in internal coordinates. Bioinformatics. 2011;27(20):pp.2843–2850.
  • Kovacs JA, Chacón P, Abagyan R. Predictions of protein flexibility: first‐order measures. proteins: structure. Funct Bioinf. 2004;56(4):pp.661–668.
  • Rapin N, Lund O, Bernaschi M, et al. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One. 2010;5:4.
  • Khatoon N, Pandey RK, Prajapati VK. Exploring leishmania secretory proteins to design b and t cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep. 2017;7(1):pp.1–12.
  • Angov E. Codon usage: nature’s roadmap to expression and folding of proteins. Biotechnol J. 2011;6(6):pp.650–659.
  • Grote A, Hiller K, Scheer M, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33(suppl_2):pp.W526–W531.
  • Solanki V, Tiwari V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against acinetobacter baumannii. Sci Rep. 2018;8(1):pp.1–19.
  • Biswal JK, Bisht P, Mohapatra JK, et al. Application of a recombinant capsid polyprotein (P1) expressed in a prokaryotic system to detect antibodies against foot-and-mouth disease virus serotype O. J Virol Methods. 2015;215:pp.45–51.
  • Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):pp.3406–3415.
  • Mathews DH, Sabina J, Zuker M, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999;288(5):pp.911–940.
  • Mathews DH, Turner DH, Zuker M. RNA secondary structure prediction. Curr Protoc Nucleic Acid Chem. 2007;28(1):pp.11–2.
  • Gruber AR, Lorenz R, Bernhart SH, et al. The vienna RNA websuite. Nucleic Acids Res. 2008;36(suppl_2):pp.W70–W74.
  • Chauhan V, Rungta T, Goyal K, et al. Designing a multi-epitope based vaccine to combat kaposi sarcoma utilizing immunoinformatics approach. Sci Rep. 2019;9(1):pp.1–15.
  • Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov. 2007;6(5):pp.404–414.
  • De groot AS, Sbai H, Aubin CS, et al. Immuno‐informatics: mining genomes for vaccine components. Immunol Cell Biol. 2002;80(3):pp.255–269.
  • Zhang L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell Mol Immunol. 2018;15(2):pp.182–184.
  • Rappuoli R, Bottomley MJ, D’Oro U, et al. Reverse vaccinology 2.0: human immunology instructs vaccine antigen design. J Exp Med. 2016;213(4):pp.469–481.
  • Rappuoli R. Reverse vaccinology. Curr Opin Microbiol. 2000;3(5):pp.445–450.
  • Gill SC, Von hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989;182(2):pp.319–326.
  • Pace CN, Vajdos F, Fee L, et al. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995;4(11):pp.2411–2423.
  • Guruprasad K, Reddy BB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering. Des Sel. 1990;4(2):pp.155–161.
  • Ikai A. Thermostability and aliphatic index of globular proteins. J Biochem. 1980;88(6):pp.1895–1898.
  • Kyte J, Doolittle. RF. Mol. Biol. 1982;157:pp.105–132.
  • Chang KY, Yang JR. Analysis and prediction of highly effective antiviral peptides based on random forests. PloS One. 2013;8:8.
  • Cooper NR, Nemerow GR. The role of antibody and complement in the control of viral infections. J Invest Dermatol. 1984;83(s 1):pp.121–127.
  • Bacchetta R, Gregori S, Roncarolo MG. CD4+ regulatory T cells: mechanisms of induction and effector function. Autoimmun Rev. 2005;4(8):pp.491–496.
  • Cano RLE, Lopera HDE. Introduction to T and B lymphocytes. In Autoimmunity: From Bench to Bedside [Internet]. El Rosario University Press; 2013.
  • Garcia KC, Teyton L, Wilson IA. Structural basis of T cell recognition. Annu Rev Immunol. 1999;17(1):pp.369–397.
  • Panda S, Chandra G. Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates. Bioinformation. 2012;8(18):p.891.
  • Almofti YA, Abd-elrahman KA, Gassmallah SAE, et al. Multi epitopes vaccine prediction against severe acute respiratory syndrome (sars) coronavirus using immunoinformatics approaches. Am J Microbiol Res. 2018;6(3):pp.94–114.
  • Carvalho LH, Sano GI, Hafalla JC, et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat Med. 2002;8(2):pp.166–170.
  • Shey RA, Ghogomu SM, Esoh KK, et al. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep. 2019;9(1):pp.1–18.
  • Hoque MN, Istiaq A, Clement RA, et al. Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Sci Rep. 2019;9(1):pp.1–14.
  • Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol. 2014;14(11):pp.719–730.
  • Pei H, Liu J, Cheng Y, et al. Expression of sars-coronavirus nucleocapsid protein in escherichia coli and lactococcus lactis for serodiagnosis and mucosal vaccination. Appl Microbiol Biotechnol. 2005;68(2):pp.220–227.
  • Morla S, Makhija A, Kumar S. Synonymous codon usage pattern in glycoprotein gene of rabies virus. Gene. 2016;584(1):pp.1–6.
  • Hamasaki‐katagiri N, Lin BC, Simon J, et al. The importance of mRNA structure in determining the pathogenicity of synonymous and non‐synonymous mutations in haemophilia. Haemophilia. 2017;23(1):pp.e8–e17.
  • Yazdani Z, Rafiei A, Yazdani M, et al. Design an efficient multi-epitope peptide vaccine candidate against sars-cov-2: an in silico analysis. Infect Drug Resist. 2020 Aug: ;3007–3022. doi: 10.2147/IDR.S264573
  • Joshi A, Joshi BC, Mannan MA, et al. Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Inf Med Unlocked. 2020 Apr;29;100338
  • Lizbeth RS, Jazmín GM, José CB, et al. Immunoinformatics study to search epitopes of spike glycoprotein from sars-cov-2 as potential vaccine. J Biomol Struct Dyn. 2020 Jun;23;1–5
  • Chauhan V, Rungta T, Rawat M, et al. Excavating SARS‐coronavirus 2 genome for epitope‐based subunit vaccine synthesis using immunoinformatics approach. J Cell Physiol. [2020 Jul9]. doi: 10.1002/jcp.29923

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.