132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Remediation effect and mechanism of low-As-accumulating maize and peanut intercropping for safe-utilization of As-contaminated soil

, , , &
Pages 1956-1966 | Published online: 16 May 2023
 

Abstract

Phytoremediation by intercropping is a potential method to realize both production and remediation. Maize and peanut are the main crops planted in arsenic(As) contaminated areas in south China and vulnerable to As pollution. Experiments were conducted on arsenic-polluted soil with low As-accumulating maize monoculture (M), peanut monoculture (P), and intercropping with different distances between the maize and peanut (0.2 m, 0.35 m, and 0.5 m, recorded as MP0.2, MP0.35, and MP0.5, respectively). The results indicated that the As content in the maize grains and peanut lipids in the intercropping system decreased significantly, meeting the food safety standard of China (GB 2762-2017). Moreover, the land equivalent ratio (LER) and heavy metal removal equivalence ratio (MRER) of all intercropping treatments were greater than 1, indicating that this intercropping agrosystem has the advantage of production and arsenic removal, among which the yield and LER of MP0.35 treatment were the highest. Additionally, the bioconcentration factors (BCF) and translocation factor (TF) of MP0.2 increased by 117.95% and 16.89%, respectively, indicating that the root interaction affected the absorption of As in soil by crops. This study preliminarily demonstrated the feasibility of this intercropping system to safely use and remedy arsenic-contaminated farmland during production.

NOVELTY STATEMENT

Phytoremediation by intercropping is a potential method to realize both production and remediation. Maize and peanuts are the main crops planted in As-contaminated areas and easily polluted by As. This study preliminarily demonstrated the feasibility of this intercropping system to safely use and remedy arsenic-contaminated farmland during production.

Author contributions

Yinshi Li: Conceptualization, Data curation, Formal analysis, Software, Writing – original draft, Writing – review & editing. Dongxia Liang: Conceptualization, Writing – review & editing. Bingqian Li: Methodology, Data curation, Investigation. Wenjuan Wang: Conceptualization, Formal analysis, Software. Huashou Li: Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Writing – review & editing.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability statement

The data that support the findings of this study are available from the corresponding author by request.

Additional information

Funding

This work was supported by National Key Research and Development Program of China (2020YFC1807805), the National Natural Science Foundation of China (42277223) and the Science and Technology Planning Project of Guangzhou, Guangdong Province, China (202206010176) for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.