132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Remediation effect and mechanism of low-As-accumulating maize and peanut intercropping for safe-utilization of As-contaminated soil

, , , &

References

  • Burton AB, Kemanian AR. 2022. Assessing a century of maize and soybean polyculture for silage production. Agron J. 114(3):1615–1626. doi:10.1002/agj2.21006.
  • Cao XX, Gao X, Zeng XB, Ma YB, Gao Y, Baeyens W, Jia YH, Liu J, Wu CX, Su SM. 2021. Seeking for an optimal strategy to avoid arsenic and cadmium over-accumulation in crops: soil management vs cultivar selection in a case study with maize. Chemosphere. 272:129891. doi:10.1016/j.chemosphere.2021.129891.
  • Chen J, Arafat Y, Wu LK, Xiao ZG, Li Q, Khan MA, Khan MU, Lin S, Lin WX. 2018. Shifts in soil microbial community, soil enzymes and crop yield under peanut/maize intercropping with reduced nitrogen levels. Appl Soil Ecol. 124:327–334. doi:10.1016/j.apsoil.2017.11.010.
  • Chibuike GU, Obiora SC. 2014. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. 2014:1–12. doi:10.1155/2014/752708.
  • Elodie B, Duputel M, Colomb B, Dominique D, Hinsinger P. 2012. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low p soil. Soil Biol Biochem. 46:181–190. doi:10.1016/j.soilbio.2011.11.015.
  • Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 226(1):497–509. doi:10.1016/S0021-9258(18)64849-5.
  • Gong B, He EK, Qiu H, Van Gestel CAM, Romero-Freire A, Zhao L, Xu XY, Cao XD. 2020. Interactions of arsenic, copper, and zinc in soil-plant system: partition, uptake and phytotoxicity. Sci Total Environ. 745:140926. doi:10.1016/j.scitotenv.2020.140926.
  • Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P. 2006. Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol. 9(3):341–346. doi:10.1016/j.pbi.2006.03.008.
  • Guo JM, Zheng GD, Yang JX, Chen TB, Meng XF, Xia TX. 2022. Safe utilization of cadmium- and lead-contaminated farmland by cultivating a winter rapeseed/maize rotation compared with two phytoextraction approaches. J Environ Manage. 304:114306. doi:10.1016/j.jenvman.2021.114306.
  • He W, Song Q, Yang S, Song F. 2019. Biological fertilizer: effects on enzyme activity and microbial community structure in rice soil. Chinese Agricultural Science Bulletin. 35:106–113.
  • Hei ZW, Xiang HM, Zhang JE, Liang KM. 2019. Advances in legumes-based remediation of heavy metals contaminated soil. Ecol Sci. 38:218–224.
  • Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H. 2016. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol. 50(8):4178–4185. doi:10.1021/acs.est.5b05424.
  • Huang CD, Liu QQ, Li HP, Li XL, Zhang CC, Zhang FS. 2018. Optimised sowing date enhances crop resilience towards size-asymmetric competition and reduces the yield difference between intercropped and sole maize. Field Crops Res. 217:125–133. doi:10.1016/j.fcr.2017.12.010.
  • Huang S, Zhuo C, Du XY, Li HS. 2021. Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice. Int J Phytoremediation. 23(10):1021–1029. doi:10.1080/15226514.2021.1872485.
  • Huda N, Khanom A, Mizanur Rahman M, Amdadul Huq M, Mashiar Rahman M, Banu NA. 2022. Biochemical process and functional genes of arsenic accumulation in bioremediation: agricultural soil. Int J Environ Sci Technol. 19(9):9189–9208. doi:10.1007/s13762-021-03655-x.
  • Jiang L, Chen YQ, Sui P, Luan C, Zhang M, Wang HJ, Li YY, Gao WS. 2010. The rhizosphere soil enzyme activities of different corn intercropping system. Chin Agric Sci Bull. 26:326–330.
  • Jiang YH, Khan MU, Lin XQ, Lin ZM, Lin S, Lin WX. 2022. Evaluation of maize/peanut intercropping effects on microbial assembly, root exudates and peanut nitrogen uptake. Plant Physiol Biochem. 171:75–83. doi:10.1016/j.plaphy.2021.12.024.
  • Kang ZM, Gong MJ, Li YS, Chen WZ, Yang YN, Qin JH, Li HS. 2021. Low cd-accumulating rice intercropping with sesbania cannabina l. Reduces grain cd while promoting phytoremediation of cd-contaminated soil. Sci Total Environ. 800:149600. doi:10.1016/j.scitotenv.2021.149600.
  • Kang ZM, Zhang WY, Qin JH, Li SH, Yang X, Wei X, Li HS. 2020. Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management. Ecotoxicol Environ Saf. 190:110102. doi:10.1016/j.ecoenv.2019.110102.
  • Kumar S, Choudhary AK, Suyal DC, Makarana G, Goel R. 2022. Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops. J Hazard Mater. 425:127965. doi:10.1016/j.jhazmat.2021.127965.
  • Kumarathilaka P, Seneweera S, Ok YS, Meharg AA, Bundschuh J. 2020. Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach - a critical review. Crit Rev Environ Sci Technol. 50(1):31–71. doi:10.1080/10643389.2019.1618691.
  • Li F, Wang X, Guo Y, Xu X, Zhang X, Ji Y. 2012. Study of soil enzymes activity and their correlation with soil nutrients in different types of saline-alkali soils in Yinchuan Plain of Ningxia. J Arid Land Res Environ. 26:121–126.
  • Li G, Khan S, Ibrahim M, Sun TR, Tang JF, Cotner JB, Xu YY. 2018. Biochars induced modification of dissolved organic matter (dom) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. J Hazard Mater. 348:100–108. doi:10.1016/j.jhazmat.2018.01.031.
  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci U S A. 104(27):11192–11196. doi:10.1073/pnas.0704591104.
  • Li L, Luo KL, Liu YL, Xu YX. 2012. The pollution control of fluorine and arsenic in roasted corn in “coal-burning” fluorosis area Yunnan, China. J Hazard Mater. 229-230:57–65. doi:10.1016/j.jhazmat.2012.05.067.
  • Lin H, Wang ZW, Liu CJ, Dong YB. 2022. Technologies for removing heavy metal from contaminated soils on farmland: a review. Chemosphere. 305:135457. doi:10.1016/j.chemosphere.2022.135457.
  • Liu GN, Chen M, Li WQ, Gong WW. 2018. A critical review on the speciation and development of sequential extraction procedures for arsenic in soils. J Agro Environ Sci. 37(12):2629–2638.
  • Liu JX, Lu YG, Yuan HW, Jiao XM, Cui BW. 2007. Effects of intercrop maize and soybean on rhizosphere soil microbes and enzyme activity. Guizhou Agric Sci. 35:60–61.
  • Liu L, Yang YP, Duan GL, Wang J, Tang XJ, Zhu YG. 2022. The chemical-microbial release and transformation of arsenic induced by citric acid in paddy soil. J Hazard Mater. 421:126731. doi:10.1016/j.jhazmat.2021.126731.
  • Luo YK, Zhu MY, Liao M, Zhao XM. 2009. Change of acid phosphatase activity in a dry red soil polluted by lead. JFAFU. 38:285–288.
  • Lv QY, Han ML, Gao YQ, Zhang CY, Wang YL, Chao ZF, Zhong LY, Chao DY. 2022. Sec24c mediates a golgi‐independent trafficking pathway that is required for tonoplast localisation of abcc1 and abcc2. New Phytol. 235(4):1486–1500. doi:10.1111/nph.18201.
  • Ma J, Guo HM, Lei M, Zhou XY, Li FL, Yu T, Wei RF, Zhang HZ, Zhang X, Wu Y. 2015. Arsenic adsorption and its fractions on aquifer sediment: effect of pH, arsenic species, and iron/manganese minerals. Water Air Soil Pollut. 226(8):260. doi:10.1007/s11270-015-2524-1.
  • Ma J, Lei E, Lei M, Liu YH, Chen TB. 2018. Remediation of arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere. 194:737–744. doi:10.1016/j.chemosphere.2017.11.135.
  • Ministry of Environmental Protection, Ministry of Land and Resources. 2014. Reports on China’s soil contamination survey. http://www.gov.cn/xinwen/2014-04/17/content_2661765.htm.
  • Nyoki D, Ndakidemi PA. 2018. Rhizobium inoculation reduces p and k fertilization requirement in corn-soybean intercropping. Rhizosphere. 5:51–56. doi:10.1016/j.rhisph.2017.12.002.
  • Raul B, Bhattacharjee O, Ghosh A, Upadhyay P, Tembhare K, Singh A, Shaheen T, Ghosh AK, Torres-Jerez I, Krom N, et al. 2022. Microscopic and transcriptomic analyses of dalbergoid legume peanut reveal a divergent evolution leading to nod-factor-dependent epidermal crack-entry and terminal bacteroid differentiation. Mol Plant Microbe Interact. 35(2):131–145. doi:10.1094/MPMI-05-21-0122-R.
  • Rehman MU, Khan R, Khan A, Qamar W, Arafah A, Ahmad A, Ahmad A, Akhter R, Rinklebe J, Ahmad P. 2021. Fate of arsenic in living systems: implications for sustainable and safe food chains. J Hazard Mater. 417:126050. doi:10.1016/j.jhazmat.2021.126050.
  • Ren JB, Yang XL, Chen P. 2022. Effects of interspecific distances on soil physicochemical properties and root spatial distribution of maize-soybean relay strip intercropping system. Sci Agric Sin. 55:1903–1916.
  • Sahito ZA, Zehra A, Chen S, Yu S, Tang L, Ali Z, Hamza S, Irfan M, Abbas T, He Z, et al. 2022. Rhizobium rhizogenes-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake efficiency. J Hazard Mater. 424(Pt B):127442. doi:10.1016/j.jhazmat.2021.127442.
  • Shen B, Wang X, Zhang Y, Zhang M, Wang K, Xie P, Ji H. 2020. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Sci Total Environ. 711:135229. doi:10.1016/j.scitotenv.2019.135229.
  • Shiowatana J, Mclaren RG, Chanmekha N, Samphao A. 2001. Fractionation of arsenic in soil by a continuous-flow sequential extraction method. J Environ Qual. 30(6):1940–1949. doi:10.2134/jeq2001.1940.
  • Tan W, Yu H, Huang C, Li D, Zhang H, Zhao X, Li R, Wang G, Zhang Y, He X, et al. 2018. Intercropping wheat and maize increases the uptake of phthalic acid esters by plant roots from soils. J Hazard Mater. 359:9–18. doi:10.1016/j.jhazmat.2018.07.026.
  • Udvardi M, Poole PS. Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol. 2013;64:781–805. doi:10.1146/annurev-arplant-050312-120235.
  • Wang Y, Fu LB, Liang H, Zhang ZH, Yang W, He ZH, Gao SJ, Cao WD. 2021. Effects of green manure crops on cadmium availability in dryland soils in Yunnan, China. J Agro Environ Sci. 40:2124–2133.
  • Wei GH, Ma ZQ. 2010. The status, application and potential of rhizobia legume symbiosis system in the remediation of heavy metal polluted environment. Acta Microbiol Sin. 50:1421–1430.
  • Wu J, Liang J, Bjorn LO, Li J, Shu W, Wang Y. 2022. Phosphorus-arsenic interaction in the ‘soil-plant-microbe’ system and its influence on arsenic pollution. Sci Total Environ. 802:149796. doi:10.1016/j.scitotenv.2021.149796.
  • Xiao Y, Li L, Zhang F. 2004. Effect of root contact on interspecific competition and n transfer between wheat and fababean using direct and indirect 15n techniques. Plant Soil. 262(1/2):45–54. doi:10.1023/B:PLSO.0000037019.34719.0d.
  • Yadav RS, Tarafdar JC. 2001. Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biol Fertil Soils. 34:140–143. doi:10.1007/s003740100376.
  • Yan YX, Yang J, Wan XM, Shi HD, Yang JX, Ma C, Lei M, Chen TB. 2022. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and citrus reticulata blanco intercropping. Sci Total Environ. 812:152475. doi:10.1016/j.scitotenv.2021.152475.
  • Yang BL, Shan JH, Xing FG, Dai XD, Wang G, Ma JN, Adegoke TV, Zhang XY, Yu Q, Yu XH. 2022. Distribution, accumulation, migration and risk assessment of trace elements in peanut-soil system. Environ Pollut. 304:119193. doi:10.1016/j.envpol.2022.119193.
  • Yang Q, Yang ZF, Zhang QZ, Ji WB, Guan D, Liu X, Yu T, Wang L, Zhuo XX, Ji JF. 2022. Transferability of heavy metal(loid)s from karstic soils with high geochemical background to peanut seeds. Environ Pollut. 299:118819. doi:10.1016/j.envpol.2022.118819.
  • Yang X, Qin JH, Li JC, Lai ZN, Li HS. 2021. Upland rice intercropping with solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain cd while promoting phytoremediation of cd-contaminated soil. J Hazard Mater. 406:124325. doi:10.1016/j.jhazmat.2020.124325.
  • Yin SQ, Zhang X, Yin HQ, Zhang X. 2022. Current knowledge on molecular mechanisms of microorganism-mediated bioremediation for arsenic contamination: a review. Microbiol Res. 258:126990. doi:10.1016/j.micres.2022.126990.
  • Zeng LP, Lin XK, Zhou F, Qin JH, Li HS. 2019. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. Ecotoxicol Environ Saf. 167:520–530. doi:10.1016/j.ecoenv.2018.10.003.
  • Zeng P, Guo ZH, Xiao XY, Peng C, Liao BH, Zhou H, Gu JF. 2022. Facilitation of Morus alba L. intercropped with Sedum alfredii H. and Arundo donax L. on soil contaminated with potentially toxic metals. Chemosphere. 290:133107. doi:10.1016/j.chemosphere.2021.133107.
  • Zhang DS, Sun ZX, Feng LS, Bai W, Yang N, Zhang Z, Du GJ, Feng C, Cai Q, Wang Q, et al. 2020. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Res. 257:107926. doi:10.1016/j.fcr.2020.107926.
  • Zhang JW, Cao XR, Yao ZY, Lin Q, Yan BB, Cui XQ, He ZL, Yang XE, Wang CH, Chen GY. 2021. Phytoremediation of cd-contaminated farmland soil via various Sedum alfredii-oilseed rape cropping systems: efficiency comparison and cost-benefit analysis. J Hazard Mater. 419:126489. doi:10.1016/j.jhazmat.2021.126489.
  • Zhao FJ, Tang Z, Song JJ, Huang XY, Wang P. 2022. Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol Plant. 15(1):27–44. doi:10.1016/j.molp.2021.09.016.
  • Zhao JH, Liu ZX, Lai HJ, Yang DQ, Li XD. 2022. Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat–peanut rotation system. J Environ Manage. 306:114468. doi:10.1016/j.jenvman.2022.114468.
  • Zhao XH, Dong QQ, Han Y, Zhang KZ, Shi XL, Yang X, Yuan Y, Zhou DY, Wang K, Wang XG, et al. 2022. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiol. 22(1):14. doi:10.1186/s12866-021-02425-6.
  • Zheng Q, Hou JT, Hartley W, Ren L, Wang MX, Tu SX, Tan WF. 2020. As(iii) adsorption on Fe-Mn binary oxides: are Fe and Mn oxides synergistic or antagonistic for arsenic removal? Chem Eng J. 389:124470. doi:10.1016/j.cej.2020.124470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.