138
Views
6
CrossRef citations to date
0
Altmetric
Articles

Aromatic hydrocarbon compound degradation of phenylacetic acid by indigenous bacterial Sphingopyxis isolated from Lake Taihu

, , , &
Pages 1164-1171 | Published online: 13 Dec 2019
 

ABSTRACT

The aromatic compound phenylacetic acid (PAA) is present in the environment, and released in the catabolism of phenylalanine, 2-phenylethylamine, or environmental contaminants such as ethylbenzene and styrene. PAA was also proposed to be involved in human chronic kidney disease development. Several bacteria and fungi utilize these aromatic acids as sole carbon source either during aerobic or anaerobic conditions. The aromatic structure of PAA makes this compound resistant toward oxidation or reduction, because the stabilizing resonance energy of the aromatic ring system is difficult to overcome. In the case of bacteria that utilize aromatic compounds as growth substrates, the aromatic ring system limits survival due to a lack of carbon source. Sphingopyxis sp. YF1 isolated from Lake Taihu was found to be beneficial in bioremediation of aromatic compounds. This study thus aimed to examine the influence of environmental factors such as temperature, PAA concentration, and pH on the effectiveness of Sphingopyxis sp. YF1 to degrade aromatic compounds using PAA as model compound. Data showed the highest PAA-degrading rate of strain Sphingopyxis sp. YF1 was 7.6 mg/L·h under the condition of 20°C, pH 9 with a 1000 μg/ml concentration of PAA. Evidence indicates that PAA-degrading ability of strain Sphingopyxis sp. YF1 appears to be primarily influenced by the concentration of PAA, followed by temperature and pH. PAA-degrading gene PAAase was identified in this strain using polymerase chain reaction (PCR) method. These results illustrate that the bacteria Sphingopyxis sp. YF1 removes PAA effectively at certain environmental conditions and this proves beneficial in bioremediation of aromatic compounds.

Additional information

Funding

This work was supported by the National Natural Science Foundation (81773393, 81502787); Central South University Innovation Driven Project (20170027010004); Key Research and Development Projects in Hunan Province (2019SK2041, 2018WK2013); Fundamental Research Funds for the Central Universities of Central South University (2018zzts858, CX20190241); The Ministry of Science and Technology of China (2015FY111100, 2016YFC0900802).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.