138
Views
6
CrossRef citations to date
0
Altmetric
Articles

Aromatic hydrocarbon compound degradation of phenylacetic acid by indigenous bacterial Sphingopyxis isolated from Lake Taihu

, , , &

References

  • Bartolome-Martin, D., E. Martinez-Garcia, V. Mascaraque, J. Rubio, J. Perera, and S. Alonso. 2004. Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2. Gene 341:167–79. doi:10.1016/j.gene.2004.06.042.
  • Cox, J. S., K. Moncja, M. Mckinnes, and M. W. Van Dyke. 2019. Identification and Characterization of preferred DNA-binding sites for the Thermus thermophilus HB8 transcriptional regulator TTHA0973. Int. J. Mol. Sci. 20:3336. doi:10.3390/ijms20133336.
  • Crofts, T. S., B. Wang, A. Spivak, T. A. Gianoulis, K. J. Forsberg, M. K. Gibson, L. A. Johnsky, S. M. Broomall, C. N. Rosenzweig, E. W. Skowronski, et al. 2018. Shared strategies for beta-lactam catabolism in the soil microbiome. Nat. Chem. Biol. 14:556–64. doi:10.1038/s41589-018-0052-1.
  • Cui, B., Y. Lv, F. Gao, C. Wang, Z. Zeng, Y. Wang, C. Sun, X. Zhao, Y. Shen, G. Liu, et al. 2019. Improving abamectin bioavailability via nanosuspension constructed by wet milling technique. Pest. Manage. Sci. 75:2756–64. doi:10.1002/ps.5386.
  • Dagley, S., E. Fewster, and F. C. Happold. 1952. The bacterial oxidation of phenylacetic acid. J. Bacteriol. 3:327–36.
  • EL-Moslamy, S. H., M. F. Elkady, A. H. Rezk, and Y. R. Abdel-Fattah. 2017. Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci. Rep. 7:45297. doi:10.1038/srep45297.
  • Erb, T. J., W. Ismail, and G. Fuchs. 2008. Phenylacetate metabolism in thermophiles: Characterization of phenylacetate-CoA ligase, the initial enzyme of the hybrid pathway in Thermus thermophilus. Curr. Microbiol. 57:27–32. doi:10.1007/s00284-008-9147-3.
  • Fernández, C., E. Díaz, and J. L. García. 2014. Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli. Environ. Microbiol. Rep. 6:239–50. doi:10.1111/1758-2229.12117.
  • Grishin, A. M., E. Ajamian, L. Tao, L. Zhang, R. Menard, and M. Cygler. 2011. Structural and functional studies of the Escherichia coli phenylacetyl-CoA monooxygenase complex. J. Biol. Chem. 286:10735–43. doi:10.1074/jbc.M110.194423.
  • Huang, F., H. Feng, L. X. Xi, Y. J. Guo, F. Yang, and F. Yang. 2019. Anaerobic degradation of microcystin-LR by an indigenous bacterial Enterobacter sp. YF3. J. Toxicol. Environ. Health Part A 1–9. doi:10.1080/15287394.2019.1699345.
  • Ismail, W., M. M. El-Said, B. L. Wanner, K. A. Datsenko, W. Eisenreich, F. Rohdich, A. Bacher, and G. Fuchs. 2003. Functional genomics by NMR spectroscopy Phenylacetate catabolism in Escherichia coli. Eur. J. Biochem. 270:3047–54. doi:10.1046/j.1432-1033.2003.03683.x.
  • Jourde-Chiche, N., L. Dou, C. Cerini, C. Cerini, F. Dignat-George, R. Vanholder, and P. Brunet. 2009. Protein-bound toxins. Semin. Dialysis. doi:10.1111/j.1525-139X.2009.00576.
  • Kim, J., J. Yeom, C. O. Jeon, and W. Park. 2009. Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440. Microbiology 155:2420–28. doi:10.1099/mic.0.027060-0.
  • Li, L., X. Zhang, Z. Ning, J. Mayne, J. I. Moore, J. Butcher, C. K. Chiang, D. Mack, A. Stintzi, and D. Figeys. 2017. Evaluating in vitro culture medium of gut microbiome with orthogonal experimental design and a metaproteomics approach. J. Proteome Res. 17:154–63. doi:10.1021/acs.jproteome.7b00461.
  • Luengo, J. M., J. L. Garcia, and E. R. Olivera. 2001. The phenylacetyl-CoA catabolon: A complex catabolic unit with broad biotechnological applications. Mol. Microbiol. 39:1434–42. doi:10.1046/j.1365-2958.2001.02344.x.
  • Martinez-Blanco, H., A. Reglero, L. B. Rodriguez-Aparicio, and J. M. Luengo. 1990. Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J. Biol. Chem. 265:7084–90.
  • Mohamed, M., W. Ismail, J. Heider, and G. Fuchs. 2002. Aerobic metabolism of phenylacetic acids Azoarcus Evansii. Arch. Microbiol. 178:180–92. doi:10.1007/s00203-002-0438-y.
  • Navarro-Llorens, J. M., M. A. Patrauchan, G. R. Stewart, J. E. Davies, L. D. Eltis, and W. W. Mohn. 2005. Phenylacetate catabolism in Rhodococcus sp. strain RHA1: A central pathway for degradation of aromatic compounds. J. Bacteriol. 13:4497–504. doi:10.1128/JB.187.13.4497-4504.2005.
  • Oelschlagel, M., S. R. Kaschabek, J. Zimmerling, M. Schlömann, and D. Tischler. 2015b. Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria. Biotechnol. Rep. 6:20–26. doi:10.1016/j.btre.2015.01.003.
  • Oelschlagel, M., C. Ruckert, J. Kalinowski, G. Schmidt, M. Schlomann, and D. Tischler. 2015a. Sphingopyxis fribergensis sp. nov., a soil bacterium with the ability to degrade styrene and phenylacetic acid. Int. J. Syst. Evol. Microbiol. 65:3008–15. doi:10.1099/ijs.0.000371.
  • Olivera, E. R., B. Minambres, B. Garcia, C. Muniz, M. A. Moreno, A. Ferrandez, E. Díaz, J. L. García, and J. M. Luengo. 1998. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: The phenylacetyl-CoA catabolon. Proc. Natl. Acad. Sci. USA 95:6419–24. doi:10.1073/pnas.95.11.6419.
  • Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725–29. doi:10.1093/molbev/mst197.
  • Teufel, R., C. Gantert, M. Voss, W. Eisenreich, W. Haehnel, and G. Fuchs. 2011. Studies on the mechanism of ring hydrolysis in phenylacetate degradation: A metabolic branching point. J. Biol. Chem. 286:11021–34. doi:10.1074/jbc.M110.196667.
  • Teufel, R., V. Mascaraque, W. Ismail, M. Voss, J. Perera, W. Eisenreich, W. Haehnel, and G. Fuchs. 2010. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl. Acad. Sci. USA 107:14390–95. doi:10.1073/pnas.1005399107.
  • Ward, P. G., G. de Roo, and K. E. O’Connor. 2005. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl. Environ. Microbiol. 71:2046–52. doi:10.1128/AEM.71.4.2046-2052.2005.
  • Wu, P., G. Li, Y. He, D. Luo, L. Li, J. Guo, P. Ding, and F. Yang. 2019. High-efficient and sustainable biodegradation of microcystin-LR using Sphingopyxis sp. YF1 immobilized Fe3O4@chitosan. Colloids Surf. B. doi:10.1016/j.colsurfb.2019.110633.
  • Yang, F., J. Guo, F. Huang, I. Y. Massey, R. Huang, Y. Li, C. Wen, P. Ding, W. Zeng, and G. Liang. 2018a. Removal of microcystin-LR by a novel native effective bacterial community designated as YFMCD4 isolated from Lake Taihu. Toxins (Basel) 10. doi:10.3390/toxins10090363.
  • Yang, F., F. Huang, H. Feng, J. Wei, S. Hu, B. Li, I. Y. Massey, F. Zhang, K. Cao, G. Liang, et al. 2019. A novel route for detoxification of potentially carcinogenic cyanotoxin microcystin-LR in a unique bacterium. Water Res. (in press).
  • Yang, F., I. Y. Massey, J. Guo, S. Yang, Y. Pu, W. Zeng, and H. Tan. 2018b. Microcystin-LR degradation utilizing a novel effective indigenous bacterial community YFMCD1 from Lake Taihu. J. Toxicol. Environ. Health Part A 81:184–93. doi:10.1080/15287394.2018.1423803.
  • Yano, S., T. Yanaguchi, I. Kanazawa, N. Ogawa, K. Hayashi, M. Yamauchi, and T. Sugimoto. 2007. The uraemic toxin phenylacetic acid inhibits osteoblastic proliferation and differentiation: An implication for the pathogenesis of low turnover bone in chronic renal failure. Nephrol.Dial. Transplant. 22:3160–65. doi:10.1093/ndt/gfm455.
  • Zainal, N. A., S. R. A. Shukor, and K. A. Razak. 2015. Applying the Taguchi method to optimise the size of silica nanoparticles entrapped with rifampicin for a drug delivery system. J. Eng. Sci. 11:9–16.
  • Zhang, C., I. Y. Massey, Y. Liu, F. Huang, R. Gao, M. Ding, L. Xiang, C. He, J. Wei, Y. Li, et al. 2019. Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa. J. Toxicol. Environ. Health Part A 82:845–53. doi:10.1080/15287394.2019.1660466.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.