256
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles

, ORCID Icon &
Pages 487-510 | Received 31 May 2019, Accepted 11 Nov 2019, Published online: 18 Nov 2019
 

Abstract

The present article is proposed to capture the influences of carbon nanotubes’ agglomeration on the natural frequency behaviors of multi-scale hybrid nanocomposite plates for the first time. The constituent material, which is a hybrid nanocomposite, is consisted of both macro- and nano-scale reinforcing fibers dispersed in a polymer matrix. The equivalent material properties are seemed to be calculated coupling the Eshelby-Mori-Tanaka model with the rule of the mixture to consider the effects of carbon nanotubes inside the probably generated clusters while finding the mechanical properties of such novel hybrid nanocomposites. Furthermore, an energy-based approach is implemented to obtain the governing equations of the problem utilizing a refined higher-order plate theorem. Next, the derived equations will be solved in the framework of Galerkin's well-known analytical method to reach the fundamental frequency. It is worth mentioning that the influence of various boundary conditions is included. Once the validity of the presented results is proven, a set of numerical examples are presented to explain how each variant can affect the plate’s natural frequency.

Communicated by Wei-Chau Xie.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.