256
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles

, ORCID Icon &
Pages 487-510 | Received 31 May 2019, Accepted 11 Nov 2019, Published online: 18 Nov 2019

References

  • Amir, S., H. BabaAkbar-Zarei, and M. Khorasani. 2019. Flexoelectric vibration analysis of nanocomposite sandwich plates. Mechanics Based Design of Structures and Machines 1–18. doi:10.1080/15397734.2019.1624175.
  • Ansari, M. I., and A. Kumar. 2019. Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mechanics Based Design of Structures and Machines 47 (1):67–86. doi:10.1080/15397734.2018.1519635.
  • Ansari, R., J. Torabi, and M. F. Shojaei. 2017. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Composites Part B: Engineering 109:197–213. doi:10.1016/j.compositesb.2016.10.050.
  • Aref, A. J., and S. Alampalli. 2001. Vibration characteristics of a fiber-reinforced polymer bridge superstructure. Composite Structures 52 (3-4):467–74. doi:10.1016/S0263-8223(01)00036-8.
  • Aydogdu, M. 2007. Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions. Composites Science and Technology 67 (6):1096–104. doi:10.1016/j.compscitech.2006.05.021.
  • Aydogdu, M. 2009. A new shear deformation theory for laminated composite plates. Composite Structures 89 (1):94–101. doi:10.1016/j.compstruct.2008.07.008.
  • Barati, M. R., and A. M. Zenkour. 2017. Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Composite Structures 181:194–202. doi:10.1016/j.compstruct.2017.08.082.
  • Barati, M. R., and A. M. Zenkour. 2018. Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mechanics of Advanced Materials and Structures 26: 1580–1588. doi:10.1080/15376494.2018.1444235.
  • Ćetković, M., and D. Vuksanović. 2009. Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model. Composite Structures 88 (2):219–27. doi:10.1016/j.compstruct.2008.03.039.
  • Dabbagh, A., A. Rastgoo, and F. Ebrahimi. 2019. Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory. Thin-Walled Structures 140:304–17. doi:10.1016/j.tws.2019.03.031.
  • Ebrahimi, F., and A. Dabbagh. 2019. Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model. Composites Part B: Engineering 173:106955. doi:10.1016/j.compositesb.2019.106955.
  • Ebrahimi, F., and N. Farazmandnia. 2018. Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams. Steel and Composite Structures 27:149–59.
  • Ebrahimi, F., and S. Habibi. 2017. Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment. Advances in Nano Research 5:69–97.
  • Ebrahimi, F., and S. Habibi. 2018. Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments. Mechanics of Advanced Materials and Structures 25 (5):425–38. doi:10.1080/15376494.2017.1285453.
  • Ebrahimi, F., A. Jafari, and M. R. Barati. 2017. Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations. Thin-Walled Structures 119:33–46. doi:10.1016/j.tws.2017.04.002.
  • Ebrahimi, F., M. Nouraei, and A. Dabbagh. 2019. Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mechanics Based Design of Structures and Machines 1–24. doi:10.1080/15397734.2019.1660185.
  • Ebrahimi, F., A. Seyfi, and A. Dabbagh. 2019. Wave dispersion characteristics of agglomerated multi-scale hybrid nanocomposite beams. The Journal of Strain Analysis for Engineering Design 54: 276–289.
  • Fan, Y., Y. Xiang, H.-S. Shen, and D. Hui. 2018. Nonlinear low-velocity impact response of FG-GRC laminated plates resting on visco-elastic foundations. Composites Part B: Engineering 144:184–94. doi:10.1016/j.compositesb.2018.02.016.
  • Fantuzzi, N., F. Tornabene, M. Bacciocchi, and R. Dimitri. 2017. Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Composites Part B: Engineering 115:384–408. doi:10.1016/j.compositesb.2016.09.021.
  • Fazzolari, F. A., and E. Carrera. 2011. Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates. Composite Structures 94 (1):50–67. doi:10.1016/j.compstruct.2011.07.018.
  • Feng, C., S. Kitipornchai, and J. Yang. 2017. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Composites Part B: Engineering 110:132–40. doi:10.1016/j.compositesb.2016.11.024.
  • Ferreira, A., C. Roque, and R. Jorge. 2005. Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions. Computer Methods in Applied Mechanics and Engineering 194 (39-41):4265–78. doi:10.1016/j.cma.2004.11.004.
  • García-Macías, E., L. Rodríguez-Tembleque, R. Castro-Triguero, and A. Sáez. 2017. Eshelby-Mori-Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels. Composites Part B: Engineering 128:208–24. doi:10.1016/j.compositesb.2017.07.016.
  • García-Macías, E., L. Rodriguez-Tembleque, and A. Sáez. 2018. Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Composite Structures 186:123–38. doi:10.1016/j.compstruct.2017.11.076.
  • Gholami, R., and R. Ansari. 2018. Nonlinear bending of third-order shear deformable carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with different edge supports. The European Physical Journal Plus 133 (7):282. doi:10.1140/epjp/i2018-12103-2.
  • He, X. Q., M. Rafiee, S. Mareishi, and K. M. Liew. 2015. Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams. Composite Structures 131:1111–23. doi:10.1016/j.compstruct.2015.06.038.
  • Heshmati, M., M. Yas, and F. Daneshmand. 2015. A comprehensive study on the vibrational behavior of CNT-reinforced composite beams. Composite Structures 125:434–48. doi:10.1016/j.compstruct.2015.02.033.
  • Jam, J., and Y. Kiani. 2015. Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment. Composite Structures 132:35–43. doi:10.1016/j.compstruct.2015.04.045.
  • Ke, L.-L., J. Yang, and S. Kitipornchai. 2010. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Composite Structures 92 (3):676–83. doi:10.1016/j.compstruct.2009.09.024.
  • Kiani, Y., and M. Mirzaei. 2018. Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements. Composite Structures 186:114–22. doi:10.1016/j.compstruct.2017.11.086.
  • Lei, Z., L. Zhang, and K. Liew. 2015. Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Composite Structures 127:245–59. doi:10.1016/j.compstruct.2015.03.019.
  • Lei, Z., L. Zhang, and K. Liew. 2016. Parametric analysis of frequency of rotating laminated CNT reinforced functionally graded cylindrical panels. Composites Part B: Engineering 90:251–66. doi:10.1016/j.compositesb.2015.12.024.
  • Liu, D., S. Kitipornchai, W. Chen, and J. Yang. 2018. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Composite Structures 189:560–9. doi:10.1016/j.compstruct.2018.01.106.
  • Mareishi, S., M. Rafiee, X. Q. He, and K. M. Liew. 2014. Nonlinear free vibration, postbuckling and nonlinear static deflection of piezoelectric fiber-reinforced laminated composite beams. Composites Part B: Engineering 59:123–32. doi:10.1016/j.compositesb.2013.11.017.
  • Matsunaga, H. 2007. Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory. International Journal of Mechanical Sciences 49 (9):1060–75. doi:10.1016/j.ijmecsci.2006.11.008.
  • Patel, B., M. Ganapathi, and D. Makhecha. 2002. Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory. Composite Structures 56 (1):25–34. doi:10.1016/S0263-8223(01)00182-9.
  • Qiao, P., and M. Yang. 2007. Impact analysis of fiber reinforced polymer honeycomb composite sandwich beams. Composites Part B: Engineering 38 (5-6):739–50. doi:10.1016/j.compositesb.2006.07.014.
  • Rafiee, M., X. F. Liu, X. Q. He, and S. Kitipornchai. 2014. Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. Journal of Sound and Vibration 333 (14):3236–51. doi:10.1016/j.jsv.2014.02.033.
  • Rafiee, M., F. Nitzsche, and M. Labrosse. 2016. Rotating nanocomposite thin-walled beams undergoing large deformation. Composite Structures 150:191–9. doi:10.1016/j.compstruct.2016.05.014.
  • Rezaiee-Pajand, M., M. Mokhtari, and S. M. Hozhabrossadati. 2019. Application of Hencky bar-chain model to buckling analysis of elastically restrained Timoshenko axially functionally graded carbon nanotube reinforced composite beams. Mechanics Based Design of Structures and Machines 47 (5):599–620. doi:10.1080/15397734.2019.1596129.
  • Rodrigues, J. D., C. M. C. Roque, A. J. M. Ferreira, E. Carrera, and M. Cinefra. 2011. Radial basis functions–finite differences collocation and a Unified Formulation for bending, vibration and buckling analysis of laminated plates, according to Murakami’s zig-zag theory. Composite Structures 93 (7):1613–20. doi:10.1016/j.compstruct.2011.01.009.
  • Roy, T., and D. Chakraborty. 2009. Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm. Journal of Sound and Vibration 319 (1-2):15–40. doi:10.1016/j.jsv.2008.05.037.
  • Shahedi, S., and M. Mohammadimehr. 2019. Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments. Mechanics Based Design of Structures and Machines 1–31. doi:10.1080/15397734.2019.1646661.
  • Shen, H.-S., and Y. Xiang. 2014. Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Composites Part B: Engineering 67:50–61. doi:10.1016/j.compositesb.2014.06.020.
  • Shen, H.-S., Y. Xiang, Y. Fan, and D. Hui. 2018. Nonlinear bending analysis of FG-GRC laminated cylindrical panels on elastic foundations in thermal environments. Composites Part B: Engineering 141:148–57. doi:10.1016/j.compositesb.2017.12.048.
  • Shen, H.-S., Y. Xiang, F. Lin, and D. Hui. 2017. Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Composites Part B: Engineering 119:67–78. doi:10.1016/j.compositesb.2017.03.020.
  • Shi, D.-L., X.-Q. Feng, Y. Y. Huang, K.-Ch. Hwang, and H. Gao. 2004. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. Journal of Engineering Materials and Technology 126 (3):250–7. doi:10.1115/1.1751182.
  • Song, M., S. Kitipornchai, and J. Yang. 2017. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composite Structures 159:579–88. doi:10.1016/j.compstruct.2016.09.070.
  • Song, M., J. Yang, and S. Kitipornchai. 2018. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composites Part B: Engineering 134:106–13. doi:10.1016/j.compositesb.2017.09.043.
  • Song, Z., L. Zhang, and K. Liew. 2016. Dynamic responses of CNT reinforced composite plates subjected to impact loading. Composites Part B: Engineering 99:154–61. doi:10.1016/j.compositesb.2016.06.034.
  • Tita, V., J. de Carvalho, and J. Lirani. 2003. Theoretical and experimental dynamic analysis of fiber reinforced composite beams. Journal of the Brazilian Society of Mechanical Sciences and Engineering 25 (3):306–10. doi:10.1590/S1678-58782003000300014.
  • Tornabene, F., N. Fantuzzi, M. Bacciocchi, and E. Viola. 2016. Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Composites Part B: Engineering 89:187–218. doi:10.1016/j.compositesb.2015.11.016.
  • Wang, L., and H. Hu. 2005. Flexural wave propagation in single-walled carbon nanotubes. Physical Review B 71 (19):195412. doi:10.1103/PhysRevB.71.195412.
  • Wang, J., K. M. Liew, M. J. Tan, and S. Rajendran. 2002. Analysis of rectangular laminated composite plates via FSDT meshless method. International Journal of Mechanical Sciences 44 (7):1275–93. doi:10.1016/S0020-7403(02)00057-7.
  • Wattanasakulpong, N., and A. Chaikittiratana. 2015. Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Applied Mathematical Modelling 39 (18):5459–72. doi:10.1016/j.apm.2014.12.058.
  • Yang, J., H. Wu, and S. Kitipornchai. 2017. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Composite Structures 161:111–8. doi:10.1016/j.compstruct.2016.11.048.
  • Yazdi, A. A. 2019. Nonlinear aeroelastic stability analysis of three-phase nano-composite plates. Mechanics Based Design of Structures and Machines 1–16. doi:10.1080/15397734.2019.1610436.
  • Zarei, H., M. Fallah, H. Bisadi, A. Daneshmehr, and G. Minak. 2017. Multiple impact response of temperature-dependent carbon nanotube-reinforced composite (CNTRC) plates with general boundary conditions. Composites Part B: Engineering 113:206–17. doi:10.1016/j.compositesb.2017.01.021.
  • Zenkour, A. 2004. Buckling of fiber-reinforced viscoelastic composite plates using various plate theories. Journal of Engineering Mathematics 50 (1):75–93. doi:10.1023/B:ENGI.0000042123.94111.35.
  • Zenkour, A., and M. Fares. 2001. Bending, buckling and free vibration of non-homogeneous composite laminated cylindrical shells using a refined first-order theory. Composites Part B: Engineering 32 (3):237–47. doi:10.1016/S1359-8368(00)00060-3.
  • Zhang, L., and K. Liew. 2015. Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach. Composite Structures 132:974–83. doi:10.1016/j.compstruct.2015.07.017.
  • Zhang, L., K. Liew, and J. Reddy. 2016. Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory. Composite Structures 152:418–31. doi:10.1016/j.compstruct.2016.05.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.