187
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Topology and material optimization of an underactuated robot for gait rehabilitation

, &
Pages 5308-5325 | Received 17 Jan 2023, Accepted 22 Aug 2023, Published online: 30 Aug 2023
 

Abstract

This article presents the topology and material optimization of an underactuated lower limb robot for gait rehabilitation of stroke survivors. Robot aided lower limb rehabilitation has been studied for the last three decades and a few over-actuated and underactuated robot designs have been proposed in the literature. Over-actuated robots give more controlled motions, whereas underactuated designs allow unconstrained naturalistic motions. Designing an underactuated robot is difficult as it must be lightweight and yet strong enough to scaffold human lower limbs during gait. In this research, a Stephenson III six-bar linkage is modified to be used as single-actuated lower limb robot. The proposed robot design couples two four-bar linkages in a driver-driven mode to provide motions, which are equivalent to the motions from a six-bar linkage. A digital twin of the underactuated robot is developed to conduct in-silico experiments and evaluate the use of three different materials namely, aluminum alloy, structural steel, and fiber reinforced carbon composite. Finite element analysis (FEA) modeling is carried out using the Ansys workbench to assess mechanical performance indices. In order to minimize the overall weight of the robot, structural optimization is carried out using a multi-mode single objective genetic algorithm. Functional and nonfunctional design requirements are formulated as constraints to be used during the optimization experiments. The topology and material optimization presented in this article provides insights into the robot design requirements and the optimization process. As a result of this process, a significant reduction in the robot weight is achieved without compromising the mechanical performance.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.