187
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Topology and material optimization of an underactuated robot for gait rehabilitation

, &
Pages 5308-5325 | Received 17 Jan 2023, Accepted 22 Aug 2023, Published online: 30 Aug 2023

References

  • Al-Hayali, N. K., J. S. Chiad, S. M. Nacy, and O. Hussein. 2021. A review of passive and quasi-passive lower limb exoskeletons for gait rehabilitation. Journal of Mechanical Engineering Research and Developments 44:428–39.
  • Arunkumar, S., S. Mahesh, M. Rahul, N. Ganesh, and K. Maheshwaran. 2023. Design and analysis of lower limb exoskeleton with external payload. International Journal on Interactive Design and Manufacturing (IJIDeM) 17 (4):2055–72. doi: 10.1007/s12008-023-01272-1.
  • Atmaja, R., M. Munadi, and M. Tauviqirrahman. 2017. Stress analysis of lower limb exoskeleton for walking assistance using finite element method. International Journal of Applied Engineering Research (IJAER) 12:3864–3866.
  • Batkuldinova, K., A. Abilgaziyev, E. Shehab, and M. H Ali. 2021. The recent development of 3D printing in developing lower-leg exoskeleton: A review. Materials Today: Proceedings 42:1822–1828.
  • Bodie, K., C. D. Bellicoso, and M. Hutter. 2016. ANYpulator: Design and control of a safe robotic arm. Paper presented at the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE. doi: 10.1109/IROS.2016.7759189.
  • Bottin, M., and G. Rosati. 2022. Comparison of under-actuated and fully actuated serial robotic arms: a case study. Journal of Mechanisms and Robotics 14 (3):034503. doi: 10.1115/1.4053046.
  • Gabriel, J. D., and A. S. John. 1985. ANSYS engineering analysis system user’s manual. Houston, Pa: Swanson Analysis Systems.
  • Capitani, S. L., M. Bianchi, N. Secciani, M. Pagliai, E. Meli, and A. Ridolfi. 2021. Model-based mechanical design of a passive lower-limb exoskeleton for assisting workers in shotcrete projection. Meccanica 56 (1):195–210. doi: 10.1007/s11012-020-01282-3.
  • Chen, B., C.-H. Zhong, X. Zhao, H. Ma, X. Guan, X. Li, F.-Y. Liang, J. C. Y. Cheng, L. Qin, S.-W. Law, et al. 2017. A wearable exoskeleton suit for motion assistance to paralysed patients. Journal of Orthopaedic Translation 11:7–18. doi: 10.1016/j.jot.2017.02.007.
  • Chiaradia, D., M. Xiloyannis, M. Solazzi, L. Masia, and A. Frisoli. 2018. Comparison of a soft exosuit and a rigid exoskeleton in an assistive task. International Symposium on Wearable Robotics, Springer.
  • Ciocarlie, M., and P. Allen. 2010. Data-driven optimization for underactuated robotic hands. Paper presented at the 2010 IEEE International Conference on Robotics and Automation.
  • Coello, C. C., A. D. Christiansen, and A. H. Aguirre. 1995. Multiobjective design optimization of counterweight balancing of a robot arm using genetic algorithms. Paper presented at the Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, IEEE. doi: 10.1109/TAI.1995.479374.
  • Collo, A., V. Bonnet, and G. Venture. 2016. A quasi-passive lower limb exoskeleton for partial body weight support. Paper presented at the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE. doi: 10.1109/BIOROB.2016.7523698.
  • Dadi, V. V., P. Sathwik, D. Mahesh, D. Jaswanth, S. K. Kumar, M. Ramya, and D. Dinakaran. 2020. Structural design and analysis of a lower limb exoskeleton for elderly. International Journal of Advanced Mechatronic Systems 8 (2/3):65–74. doi: 10.1504/IJAMECHS.2020.111302.
  • Darwich, A., H. Nazha, A. Sliman, and W. Abbas. 2020. Ankle–foot orthosis design between the tradition and the computerized perspectives. International Journal of Artificial Organs 43 (5):354–61. doi: 10.1177/0391398819890348.
  • Fritz, H., D. Patzer, and S. S. Galen. 2019. Robotic exoskeletons for reengaging in everyday activities: Promises, pitfalls, and opportunities. Disability and Rehabilitation 41 (5):560–3. doi: 10.1080/09638288.2017.1398786.
  • Gao, M., Z. Wang, S. Li, J. Li, Z. Pang, S. Liu, and Z. Duan. 2021. Design and optimization of exoskeleton structure of lower limb knee joint based on cross four-bar linkage. AIP Advances 11 (6):065124. doi: 10.1063/5.0053899.
  • Gätz, R., M. Uebersax, and O. König. 2000. Structural optimization tool using genetic algorithms and Ansys. Paper presented at the Proceeding of 18 CAD-FEM User’s Meeting, Internationale FEM-Technologietage, Graf-Zeppelin-Haus, Friedrichshafen.
  • Ghafarian, M., B. Shirinzadeh, A. Al-Jodah, T. K. Das, and J. Pinskier. 2020. FEA-based optimization of a complete structure of a monolithic z/tip/tilt micromanipulator. Journal of Micro-Bio Robotics 16 (1):93–110. doi: 10.1007/s12213-020-00133-4.
  • Ghosh, S., N. Robson, and J. McCarthy. 2017. Design of wearable lower leg orthotic based on six-bar linkage. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers. doi: 10.1115/DETC2017-67837.
  • He, B., S. Wang, and Y. Liu. 2019. Underactuated robotics: A review. International Journal of Advanced Robotic Systems 16 (4):172988141986216. doi: 10.1177/1729881419862164.
  • He, Y., J. Liu, F. Li, W. Cao, and X. Wu. 2022. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints. Technology and Health Care: Official Journal of the European Society for Engineering and Medicine 30 (4):881–94. doi: 10.3233/THC-213177.
  • Hernández, J. H., S. S. Cruz, R. López-Gutiérrez, A. González-Mendoza, and R. Lozano. 2020. Robust nonsingular fast terminal sliding-mode control for sit-to-stand task using a mobile lower limb exoskeleton. Control Engineering Practice 101:104496. doi: 10.1016/j.conengprac.2020.104496.
  • Hussain, F., R. Goecke, and M. Mohammadian. 2021. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 235 (12):1375–85. doi: 10.1177/09544119211032010.
  • Kapsalyamov, A., S. Hussain, N. A. T. Brown, R. Goecke, M. Hayat, and P. K. Jamwal. 2023. Synthesis of a six-bar mechanism for generating knee and ankle motion trajectories using deep generative neural network. Engineering Applications of Artificial Intelligence 117:105500. doi: 10.1016/j.engappai.2022.105500.
  • Kim, J.-Y., and B.-K. Cho. 2019. Development of a lower limb exoskeleton worn on the front of a human. Journal of Intelligent & Robotic Systems 96 (1):49–64. doi: 10.1007/s10846-018-00979-8.
  • Laschowski, B., J. McPhee, and J. Andrysek. 2019. Lower-limb prostheses and exoskeletons with energy regeneration: Mechatronic design and optimization review. Journal of Mechanisms and Robotics 11 (4):040801. doi: 10.1115/1.4043460.
  • Li, Y., X. Guan, X. Han, Z. Tang, K. Meng, Z. Shi, B. Penzlin, Y. Yang, J. Ren, Z. Yang, et al. 2020. Design and preliminary validation of a lower limb exoskeleton with compact and modular actuation. IEEE Access 8:66338–52. doi: 10.1109/ACCESS.2020.2985910.
  • Li, Z., K. Zhao, L. Zhang, X. Wu, T. Zhang, Q. Li, X. Li, and C.-Y. Su. 2021. Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking. IEEE/ASME Transactions on Mechatronics 26 (5):2700–11. doi: 10.1109/TMECH.2020.3044289.
  • Liu, B., L. Sha, K. Huang, W. Zhang, and H. Yang. 2022. A topology optimization method for collaborative robot lightweight design based on orthogonal experiment and its applications. International Journal of Advanced Robotic Systems 19 (1):172988142110561. doi: 10.1177/17298814211056143.
  • Liu, F., W. M. Cheng, and L. He. 2012. Finite element analysis of portable exoskeleton based on ergonomics parameters model. Applied Mechanics and Materials 215–216:168–73. doi: 10.4028/www.scientific.net/AMM.215-216.168.
  • Malcolm, P., S. Galle, and D. De Clercq. 2017. Fast exoskeleton optimization. Science (New York, N.Y.) 356 (6344):1230–1. doi: 10.1126/science.aan5367.
  • Moosavian, S. A. A., M. Nabipour, F. Absalan, and V. Akbari. 2021. RoboWalk: Augmented human-robot mathematical modelling for design optimization. Mathematical and Computer Modelling of Dynamical Systems 27 (1):373–404. doi: 10.1080/13873954.2021.1879874.
  • Narayan, J., and S. Kumar Dwivedy. 2021. Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 235 (5):530–45. doi: 10.1177/0954411921994940.
  • Niu, J., W. Wang, and G. Chao. 2011. Finite-element analysis of robotic fish shell based on Solidworks and Ansys. Journal of Shihezi University (Natural Science).
  • Petuya, V., E. Macho, O. Altuzarra, C. Pinto, and A. Hernandez. 2014. Educational software tools for the kinematic analysis of mechanisms. Computer Applications in Engineering Education 22 (1):72–86. doi: 10.1002/cae.20532.
  • Rodríguez-Fernández, A., J. Lobo-Prat, and J. M. Font-Llagunes. 2021. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. Journal of Neuroengineering and Rehabilitation 18 (1):22. doi: 10.1186/s12984-021-00815-5.
  • Rupal, B. S., S. Rafique, A. Singla, E. Singla, M. Isaksson, and G. S. Virk. 2017. Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications. International Journal of Advanced Robotic Systems 14 (6):172988141774355. doi: 10.1177/1729881417743554.
  • Saccares, L., I. Sarakoglou, and N. G. Tsagarakis. 2016. It-knee: An exoskeleton with ideal torque transmission interface for ergonomic power augmentation. Paper presented at the IEEE International Conference on Intelligent Robots and Systems.
  • Sanchez-Villamañan, M. D. C., J. Gonzalez-Vargas, D. Torricelli, J. C. Moreno, and J. L. Pons. 2019. Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles. Journal of Neuroengineering and Rehabilitation 16 (1):55. doi: 10.1186/s12984-019-0517-9.
  • Sarac, M., M. Solazzi, E. Sotgiu, M. Bergamasco, and A. Frisoli. 2017. Design and kinematic optimization of a novel underactuated robotic hand exoskeleton. Meccanica 52 (3):749–61. doi: 10.1007/s11012-016-0530-z.
  • Sarajchi, M., M. K. Al-Hares, and K. Sirlantzis. 2021. Wearable lower-limb exoskeleton for children with cerebral palsy: A systematic review of mechanical design, actuation type, control strategy, and clinical evaluation. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society 29:2695–720. doi: 10.1109/TNSRE.2021.3136088.
  • Sha, L., A. Lin, X. Zhao, and S. Kuang. 2020. A topology optimization method of robot lightweight design based on the finite element model of assembly and its applications. Science Progress 103 (3):36850420936482. doi: 10.1177/0036850420936482.
  • Shahar, F. S., M. T. H. Sultan, S. H. Lee, M. Jawaid, A. U. M. Shah, S. N. A. Safri, and P. N. Sivasankaran. 2019. A review on the orthotics and prosthetics and the potential of kenaf composites as alternative materials for ankle-foot orthosis. Journal of the Mechanical Behavior of Biomedical Materials 99:169–85. doi: 10.1016/j.jmbbm.2019.07.020.
  • Shahid, T., D. Gouwanda, S. G. Nurzaman, and A. A. Gopalai. 2018. Moving toward soft robotics: A decade review of the design of hand exoskeletons. Biomimetics 3 (3):17. doi: 10.3390/biomimetics3030017.
  • Taha, Z., A. P. Abdul Majeed, A. F. Zainal Abidin, M. A. Hashem Ali, I. M. Khairuddin, A. Deboucha, and M. Y. Wong Paul Tze. 2018. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation. Biomedizinische Technik. Biomedical Engineering 63 (4):491–500. doi: 10.1515/bmt-2016-0039.
  • Taylor, D., and J.-H. Dirks. 2012. Shape optimization in exoskeletons and endoskeletons: A biomechanics analysis. Journal of the Royal Society, Interface 9 (77):3480–9. doi: 10.1098/rsif.2012.0567.
  • Tian, J., Y. Liu, J. Chen, B. Guo, and S. Prasad. 2021. Finite element analysis of a self-propelled capsule robot moving in the small intestine. International Journal of Mechanical Sciences 206:106621. doi: 10.1016/j.ijmecsci.2021.106621.
  • Tsuge, B. Y., and J. M. McCarthy. 2015. Synthesis of a 10-bar linkage to guide the gait cycle of the human leg. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers. doi: 10.1115/DETC2015-47723.
  • Tucker, M. R., C. Shirota, O. Lambercy, J. S. Sulzer, and R. Gassert. 2017. Design and characterization of an exoskeleton for perturbing the knee during gait. IEEE Transactions on Bio-Medical Engineering 64 (10):2331–43. doi: 10.1109/TBME.2017.2656130.
  • Umesh, K., and R. Vidhyapriya. 2021. Finite element analysis of lower limb exoskeleton during sit-to-stand transition. Computer Methods in Biomechanics and Biomedical Engineering 24 (13):1419–25. doi: 10.1080/10255842.2021.1892658.
  • Vélez-Guerrero, M., M. Callejas-Cuervo, J. Álvarez, S. Mazzoleni, A. M. López, D. Álvarez, and L. González. 2022. Protocol proposal for the mechanical evaluation of a soft robotic exoskeleton using an optical motion capture system. Paper presented at the 2022 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), IEEE.
  • Wang, J., Y. Fei, and W. Chen. 2020. Integration, sensing, and control of a modular soft-rigid pneumatic lower limb exoskeleton. Soft Robotics 7 (2):140–54. doi: 10.1089/soro.2019.0023.
  • Wang, J., Y. Pang, X. Chang, W. Chen, and J. Zhang. 2019. Mechanical design and optimization on lower limb exoskeleton for rehabilitation. Paper presented at the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), IEEE. doi: 10.1109/ICIEA.2019.8833906.
  • Wang, T., B. Zhang, C. Liu, T. Liu, Y. Han, S. Wang, J. P. Ferreira, W. Dong, and X. Zhang. 2022. A review on the rehabilitation exoskeletons for the lower limbs of the elderly and the disabled. Electronics 11 (3):388. doi: 10.3390/electronics11030388.
  • Wang, W., Y. Liu, P. Ren, J. Zhang, and J. Liu. 2018. The characteristics of human-robot coadaptation during human-in-the-loop optimization of exoskeleton control. Paper presented at the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE. doi: 10.1109/ROBIO.2018.8665057.
  • Wicaksono, R. A., S. D. Hariyanto, P. Prihandoko, G. S. Prihandana, and T. Sriani. 2016. Design and analysis of exoskeleton as a rehabilitation device. Applied Mechanics and Materials 842:423–9. doi: 10.4028/www.scientific.net/AMM.842.423.
  • Yan, Z., B. Han, Z. Du, T. Huang, O. Bai, and A. Peng. 2021. Development and testing of a wearable passive lower-limb support exoskeleton to support industrial workers. Biocybernetics and Biomedical Engineering 41 (1):221–38. doi: 10.1016/j.bbe.2020.12.010.
  • Yang, M., X. Wang, Z. Zhu, R. Xi, and Q. Wu. 2019. Development and control of a robotic lower limb exoskeleton for paraplegic patients. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (3):1087–98. doi: 10.1177/0954406218761484.
  • Yang, Z., Y. Chu, X. Xu, H. Huang, D. Zhu, S. Yan, and H. Ding. 2021. Prediction and analysis of material removal characteristics for robotic belt grinding based on single spherical abrasive grain model. International Journal of Mechanical Sciences 190:106005. doi: 10.1016/j.ijmecsci.2020.106005.
  • Yap, Y. L., W. Toh, A. Giam, F. R. Yong, K. I. Chan, J. W. S. Tay, S. S. Teong, R. Lin, and T. Y. Ng. 2023. Topology optimization and 3D printing of micro-drone: Numerical design with experimental testing. International Journal of Mechanical Sciences 237:107771. doi: 10.1016/j.ijmecsci.2022.107771.
  • Yeong, W. Y., and G. D. Goh. 2020. 3D printing of carbon fiber composite: The future of composite industry? Matter 2 (6):1361–3. doi: 10.1016/j.matt.2020.05.010.
  • Yu, S., H. Lee, W. Kim, and C. Han. 2016. Development of an underactuated exoskeleton for effective walking and load-carrying assist. Advanced Robotics 30 (8):535–51. doi: 10.1080/01691864.2015.1135080.
  • Zhang, J., P. Fiers, K. A. Witte, R. W. Jackson, K. L. Poggensee, C. G. Atkeson, and S. H. Collins. 2017. Human-in-the-loop optimization of exoskeleton assistance during walking. Science (New York, N.Y.) 356 (6344):1280–4. doi: 10.1126/science.aal5054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.