968
Views
121
CrossRef citations to date
0
Altmetric
Original Articles

Application of carbon nanostructures toward SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations

, , &
Pages 176-188 | Received 11 May 2015, Accepted 01 Nov 2015, Published online: 20 Jan 2016
 

Abstract

We studied the adsorption of SOx (x = 2,3) molecules on the surface of pristine graphene (PG) and N-doped graphene (NDG) by density functional theory (DFT) calculations at the B3LYP/6-31G(d) level. We used Mulliken and NBO charge analysis to calculate the net charge transfer of adsorbed SOx on pristine and defected graphene systems. Our calculations reveal much higher adsorption energy and higher net charge transfer by using NDG instead of pristine graphene. Furthermore, the density of state (DOS) graphs point to major orbital hybridization between the SOx and NDG, while there is no evidence of hybridization by using pristine graphene. Based on our results, it is found that SO2 and SO3 molecules can be adsorbed on the surface of NDG physically and chemically with adsorption energies (Eads) of −27.5 and 65.2 kJ mol−1 (19.6 and 51.4 kJ mol−1 BSSE), respectively, while low adsorption energies were calculated in the case of using pristine graphene. So we introduced NDG as a sensitive adsorbent/sensor for detection of SO2 and SO3.

GRAPHICAL ABSTRACT

Funding

This work received financial support from Iran Nanotechnology Initiative Council, Iran.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 683.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.