968
Views
121
CrossRef citations to date
0
Altmetric
Original Articles

Application of carbon nanostructures toward SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations

, , &
Pages 176-188 | Received 11 May 2015, Accepted 01 Nov 2015, Published online: 20 Jan 2016

References

  • Mitsui Y, Imada N, Kikkawa H, Katagawa A. Study of Hg and SO3 behavior in flue gas of oxy-fuel combustion system. Int J Greenh Gas Control. 2011;5:143–150. doi: 10.1016/j.ijggc.2011.05.017
  • Peyghan AA, Noei M, Tabar MB. A large gap opening of graphene induced by the adsorption of Co on the Al-doped site. J Mol Model. 2013;19:3007–3014. doi: 10.1007/s00894-013-1832-x
  • Baltrusaitis J, Cwiertny DM, Grassian VH. Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Phys Chem Chem Phys. 2007;9:5542–5554. doi: 10.1039/b709167b
  • Wu Q, Gao H, He H. Conformational analysis of sulfate species on Ag/Al2O3 by means of theoretical and experimental vibrational spectra. J Phys Chem. 2006;B110:8320–8324. doi: 10.1021/jp060105+
  • Jackson GJ, Driver SM, Woodruff DP, et al. A structural study of the interaction of SO2 with Cu(111). Surf Sci. 2000;459:231–244. doi: 10.1016/S0039-6028(00)00497-0
  • Terada S, Yokoyama T, Sakano M, Kiguchi M, Kitajima Y, Ohta T. Asymmetric surface structure of SO2 on Pd(111) studied by total-reflection X-ray absorption fine structure spectroscopy. Chem Phys Lett. 1999;300:645–650. doi: 10.1016/S0009-2614(98)01404-3
  • Wilson K, Hardacre C, Baddeley CJ, Ludecke J, Woodruff DP, Lsmbert RM. A spectroscopic study of the chemistry and reactivity of SO2 on Pt{111}: reactions with O2, CO and C3H6. Surf Sci. 1997;372:279–288. doi: 10.1016/S0039-6028(96)01107-7
  • Soltani A, Ghafouri Raz S, Taghartapeh MR, Moradi AV, Mehrabian RZ. Ab initio study of the NO2 and SO2 adsorption on Al12N12 nano-cage sensitized with gallium and magnesium. Comput Mater Sci. 2013;79:795–803. doi: 10.1016/j.commatsci.2013.07.011
  • Harrison MJ, Woodruff DP, Robinson J. Density functional theory investigation of the structure of SO2 and SO3 on Cu(111) and Ni(111). Surf Sci. 2006;600:1827–1836. doi: 10.1016/j.susc.2006.02.020
  • Sakai Y, Koyanagi M, Mogi K, Miyoshi E. Theoretical study of adsorption of SO2 on Ni(111) and Cu(111) surfaces. Surf Sci. 2002;513:272–282. doi: 10.1016/S0039-6028(02)01700-4
  • Li YL, Shi CY, Li JJ, Gu CZ. Local field-emission characteristic of individual AlN cone fabricated by focused ion-beam etching method. Appl Surf Sci. 2008;254:4840–4844. doi: 10.1016/j.apsusc.2008.01.119
  • Zhou X, Pan QJ, Li MX, Xia BH, Zhang HX. Theoretical studies on square-planar pincer platinum(II) complex and its SO2 adducts: SO2 detector and potential luminescent probe. J Mol Struct (Theochem). 2007;822:65–73. doi: 10.1016/j.theochem.2007.07.021
  • Shokuhi Rad A, Nasimi N, Jafari M, Sadeghi Shabestari D, Gerami E. Ab-initio study of interaction of some atmospheric gases (SO2, NH3, H2O, CO, CH4 and CO2) with polypyrrole (3PPy) gas sensor: DFT calculations. Sensors Actuat B. 2015;220:641–651. doi: 10.1016/j.snb.2015.06.019
  • Hamadanian M, Khoshnevisan B, Fotooh FK, Tavangar Z. Computational study of super cell Al-substituted single-walled carbon nanotubes as CO sensor. Comput Mater Sci. 2012;58:45–50. doi: 10.1016/j.commatsci.2012.01.001
  • Shokuhi Rad A, Shadravan A, Soleymani AA, Motaghedi N. Lewis acid-basesurface interaction of some boron compounds with N-doped graphene; first principles study. Curr Appl Phys. 2015;15:1271–1277. doi: 10.1016/j.cap.2015.07.018
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field EFFECT in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–191. doi: 10.1038/nmat1849
  • Wanglai C, Meiling H, Jie L, Shandong Y, Yongjun L, Yinghao C. Oxidation of SO2 and NO by epoxy groups on graphene oxides: the role of the hydroxyl group. RSC Adv. 2015;5:22802–22810. doi: 10.1039/C4RA15179H
  • Shokuhi Rad A, Kashani OR. Adsorption of Acetyl halide molecules on the surface of pristine and Al-doped graphene: ab initio study. Appl Surf Sci. 2015;355:233–241. doi: 10.1016/j.apsusc.2015.07.113
  • Shokuhi Rad A. Al-doped graphene as sensitive nanostructure sensor for some ether molecules: ab-initio study of adsorption. Synth Met. 2015;209:419–425. doi: 10.1016/j.synthmet.2015.08.021
  • Shokuhi Rad A. First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl Surf Sci. 2015;357:1217–1224. doi: 10.1016/j.apsusc.2015.09.168
  • Shokuhi Rad A, Foukolaei VP. Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synth Met. 2015. doi:10.1016/j.synthmet.2015.09.026
  • Shokuhi Rad A. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf Sci. 2015. doi:10.1016/j.susc.2015.10.036
  • Wei D, Liu Y, Yu W, Hongliang Z, Liping H, Gui Y. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009;9:1752–1758. doi: 10.1021/nl803279t
  • Lv R, Li Q, Botello-Méndez AR, et al. Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep. 2012;2:586. doi:10.1038/srep00586
  • Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian Inc. Wallingford, CT. 2004.
  • Shokuhi Rad A, Zardoost MR, Abedini E. First-principles study of terpyrrole as a potential hydrogen cyanide sensor: DFT calculations. J Mol Model. 2015;21:273. 10.1007/s00894-015-2814-y
  • Pearson RG. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem. 1988;27:734–740. doi: 10.1021/ic00277a030
  • Pearson RG. Chemical hardness and density functional theory. J Chem Sci Bangalore. 2005;117:369–377. doi: 10.1007/BF02708340
  • Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory. Chem Rev. 2003;103:1793–1874. doi: 10.1021/cr990029p
  • Pearson RG, Szentpaly L, Liu S. Electrophilicity index. J Am Chem Soc. 1999;121:1922–1924. doi: 10.1021/ja983494x
  • Shokuhi Rad A, Valipour P, Gholizade A, Mousavinezhad SE. Interaction of SO2 and SO3 on terthiophene (as a model of polythiophene gas sensor): DFT calculations. Chem Phys Lett. 2015;639:29–35. doi: 10.1016/j.cplett.2015.08.062
  • Shokuhi Rad A. Application of polythiophene to methanol vapor detection: an ab initio study. J Mol Model. 2015;21:285. doi:10.1007/s00894-015-2832-9
  • Shokuhi Rad A. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf Sci. 2015. doi:10.1016/j.susc.2015.10.036
  • Shokuhi Rad A. Terthiophene as a model sensor for some atmospheric gases: theoretical study. Mol Phys. 2015. doi:10.1080/00268976.2015.1102348
  • Shokuhi Rad A, Valipour P. Interaction of methanol with some aniline and pyrrole derivatives: DFT calculations. Synth Met. 2015;209:502–511. doi: 10.1016/j.synthmet.2015.08.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.