7,273
Views
4
CrossRef citations to date
0
Altmetric
Review

Vitamin D in dairy cows: metabolism, status and functions in the immune system

ORCID Icon & ORCID Icon
Pages 1-33 | Received 17 Sep 2021, Accepted 30 Nov 2021, Published online: 07 Mar 2022

Figures & data

Figure 1. Metabolism of vitamin D. Vitamin D synthetised in the skin or deriving from the feed is absorbed in the small intestine and delivered to the liver where it is hydroxylated to 25-hydroxyvitamin D [25(OH)D] by various 25-hydroxylases (CYP2R1, CYP27A1, CYP3A4, CYP2J2). 25(OH)D is transported to the kidney, where it is hydroxylated by CYP27B1 to 1,25-dihydroxyvitamin D [1,25(OH)2D], the biological active metabolite of vitamin D. Both, 25(OH)D and 1,25(OH)2D are also hydroxylated, mainly by CYP24A1, to non-bioactive metabolites which are excreted via urine or bile. The activities of CYP27B1 and CYP24A1 are regulated by various factors [concentrations of phosphorus (P), calcium (Ca), fibroblast growth factor 23 (FGF23), parathyroid hormone (PTH), 1,25(OH)2D] in order to maintain the concentration of 1,25(OH)2D at a physiological level. In the blood, the vitamin D metabolites are primarily bound to vitamin D binding protein (DBP), but a small percentage is also available in free form. Cells expressing the megalin/cubulin receptor are able to take up DBP-bound vitamin D metabolites [25(OH)D, 1,25(OH)2D] by endocytosis. In cells not expressing the megalin/cubulin receptor vitamin D metabolites in free (unbound) form are taken up by diffusion. Cells expressing CYP27B1 are able to form 1,25(OH)2D from 25(OH)D. Within the cell 1,25(OH)2D binds to the vitamin D receptor (VDR), which dimerises with retinoid X receptor (RXR) and other cofactors. The VDR-RXR complex binds to vitamin D response element (VDRE) of the DNA and mediates the effects of vitamin D by regulating the transcription of target genes. For more detail and references, see text.

Figure 1. Metabolism of vitamin D. Vitamin D synthetised in the skin or deriving from the feed is absorbed in the small intestine and delivered to the liver where it is hydroxylated to 25-hydroxyvitamin D [25(OH)D] by various 25-hydroxylases (CYP2R1, CYP27A1, CYP3A4, CYP2J2). 25(OH)D is transported to the kidney, where it is hydroxylated by CYP27B1 to 1,25-dihydroxyvitamin D [1,25(OH)2D], the biological active metabolite of vitamin D. Both, 25(OH)D and 1,25(OH)2D are also hydroxylated, mainly by CYP24A1, to non-bioactive metabolites which are excreted via urine or bile. The activities of CYP27B1 and CYP24A1 are regulated by various factors [concentrations of phosphorus (P), calcium (Ca), fibroblast growth factor 23 (FGF23), parathyroid hormone (PTH), 1,25(OH)2D] in order to maintain the concentration of 1,25(OH)2D at a physiological level. In the blood, the vitamin D metabolites are primarily bound to vitamin D binding protein (DBP), but a small percentage is also available in free form. Cells expressing the megalin/cubulin receptor are able to take up DBP-bound vitamin D metabolites [25(OH)D, 1,25(OH)2D] by endocytosis. In cells not expressing the megalin/cubulin receptor vitamin D metabolites in free (unbound) form are taken up by diffusion. Cells expressing CYP27B1 are able to form 1,25(OH)2D from 25(OH)D. Within the cell 1,25(OH)2D binds to the vitamin D receptor (VDR), which dimerises with retinoid X receptor (RXR) and other cofactors. The VDR-RXR complex binds to vitamin D response element (VDRE) of the DNA and mediates the effects of vitamin D by regulating the transcription of target genes. For more detail and references, see text.

Table 1. Cell types capable of autocrine vitamin D signalling by co-expressing CYP27B1 and VDR (Chun et al. Citation2019)

Figure 2. Model of the effects of vitamin D on bovine immune cells (macrophages, monocytes) and mammary epithelial cells. Pathogen-associated molecular patterns (PAMP) like lipopolysaccharides (LPS) bind to their receptors like toll-like receptors (TLR), and thereby initiate an immune response in the cell. The initiation of the immune response leads to an upregulation of CYP27B1 and vitamin D receptor (VDR). Activation of CPY27B1 causes an increased production of 1,25-dihydroxyvitamin D [1,25(OH)2D] from its precursor 25-hydroxyvitamin D [25(OH)D] which is taken up from the blood. 1,25(OH)2D then binds to the VDR, which after complexing with retinoid X receptor (RXR) and other cofactors, binds to vitamin D response element (VDRE) and induces the transcription of “regulated and normal T cells expressed and secreted” (RANTES), “inducible nitric oxide synthase” (iNOS) and ß-defensins, representing genes known to improve the innate immune response. For more details and references, see text.

Figure 2. Model of the effects of vitamin D on bovine immune cells (macrophages, monocytes) and mammary epithelial cells. Pathogen-associated molecular patterns (PAMP) like lipopolysaccharides (LPS) bind to their receptors like toll-like receptors (TLR), and thereby initiate an immune response in the cell. The initiation of the immune response leads to an upregulation of CYP27B1 and vitamin D receptor (VDR). Activation of CPY27B1 causes an increased production of 1,25-dihydroxyvitamin D [1,25(OH)2D] from its precursor 25-hydroxyvitamin D [25(OH)D] which is taken up from the blood. 1,25(OH)2D then binds to the VDR, which after complexing with retinoid X receptor (RXR) and other cofactors, binds to vitamin D response element (VDRE) and induces the transcription of “regulated and normal T cells expressed and secreted” (RANTES), “inducible nitric oxide synthase” (iNOS) and ß-defensins, representing genes known to improve the innate immune response. For more details and references, see text.