1,078
Views
1
CrossRef citations to date
0
Altmetric
2019 Guangzhou Workshop

Melnikov analysis of chaos in a simple SIR model with periodically or stochastically modulated nonlinear incidence rate

ORCID Icon
Pages 269-288 | Received 27 Sep 2019, Accepted 10 Jan 2020, Published online: 13 Apr 2020

Figures & data

Figure 1. The spectral density of bounded noise for b4=1,Ω2=1. (a) σ=0.1. (b) σ=0.5. (c) σ=1 and (d) σ=2.

Figure 1. The spectral density of bounded noise for b4=1,Ω2=1. (a) σ=0.1. (b) σ=0.5. (c) σ=1 and (d) σ=2.

Figure 2. Phase portraits of the system (Equation31) for b3=0,b4=0.(a) b1=2,b2=3/2. (b) b1=2,b2=5/2 and (c) b1=2,b2=3

Figure 2. Phase portraits of the system (Equation31(31) dxdτ=y,dydτ=−c2+x2+ϵ(b1y+xy−4b3sin⁡(Ω1τ)−4b4ξ(τ))+o(ϵ2),(31) ) for b3=0,b4=0.(a) b1=2,b2=3/2. (b) b1=2,b2=5/2 and (c) b1=2,b2=3

Figure 3. Phase portrait and potential of the system (Equation32) for b1=0,b2=1. (a) Phase portrait. (b) Potential.

Figure 3. Phase portrait and potential of the system (Equation32(32) dxdτ=y,dydτ=−c2+x2=−(4b2−b12)+x2,(32) ) for b1=0,b2=1. (a) Phase portrait. (b) Potential.

Figure 4. The homoclinic bifurcation curve for Smale chaos in the (Ω1,b3) plane. (a) b1=0,b2=1 and (b) b1=0,b2=2.

Figure 4. The homoclinic bifurcation curve for Smale chaos in the (Ω1,b3) plane. (a) b1=0,b2=1 and (b) b1=0,b2=2.

Figure 5. Phase portrait with b1=0,Ω1=2,ϵ=0.00001 and initial value: x(0)=0.1,y(0)=0.2. (a) b2=1,b3=3 and (b) b2=2,b3=5.

Figure 5. Phase portrait with b1=0,Ω1=2,ϵ=0.00001 and initial value: x(0)=0.1,y(0)=0.2. (a) b2=1,b3=3 and (b) b2=2,b3=5.

Figure 6. Upper bound for possible chaotic domain due to homoclinic bifurcation (Ψ=0) with Ω1=1,Ω2=2,b2=1. (a) Upper surface in (b3,b4,b1) space. (b) Upper bound in (b3,b1) plane with b4=1 and (c) Upper bound in (b4,b1) plane with b3=0.2.

Figure 6. Upper bound for possible chaotic domain due to homoclinic bifurcation (Ψ=0) with Ω1=1,Ω2=2,b2=1. (a) Upper surface in (b3,b4,b1) space. (b) Upper bound in (b3,b1) plane with b4=1 and (c) Upper bound in (b4,b1) plane with b3=0.2.

Figure 7. (a) Bifurcation curve (38) for the homoclinic orbits Γhom. Here b1=2,b2=3/2,b3=1,Ω1=1/3 and Ω2=3; (b) Phase portrait for (Equation31) with b1=2,b2=3/2,b3=1,b4=2,Ω1=1/3,Ω2=3,ϵ=0.00001 and initial value: x(0)=0.1,y(0)=0.2.

Figure 7. (a) Bifurcation curve (38′) for the homoclinic orbits Γhom. Here b1=2,b2=3/2,b3=1,Ω1=1/3 and Ω2=3; (b) Phase portrait for (Equation31(31) dxdτ=y,dydτ=−c2+x2+ϵ(b1y+xy−4b3sin⁡(Ω1τ)−4b4ξ(τ))+o(ϵ2),(31) ) with b1=2,b2=3/2,b3=1,b4=2,Ω1=1/3,Ω2=3,ϵ=0.00001 and initial value: x(0)=0.1,y(0)=0.2.

Figure 8. The surface in (b1,b2,t0) plane for I1=0.

Figure 8. The surface in (b1,b2,t0) plane for I1=0.

Figure 9. The threshold amplitude b4 of bounded noise excitation for the onset of chaos in system (Equation31) with b3=0,b1=2,b2=3/2,Ω2=2. (a) σ[0,3];(b)σ[0,1].

Figure 9. The threshold amplitude b4 of bounded noise excitation for the onset of chaos in system (Equation31(31) dxdτ=y,dydτ=−c2+x2+ϵ(b1y+xy−4b3sin⁡(Ω1τ)−4b4ξ(τ))+o(ϵ2),(31) ) with b3=0,b1=2,b2=3/2,Ω2=2. (a) σ∈[0,3];(b)σ∈[0,1].

Figure 10. Phase portraits of the system (Equation31) with b3=0,b1=2,b2=3/2,Ω2=2 and ϵ=0.00001. (a) b4=7.5,σ=0.5 with initial value: x(0)=0.1,y(0)=0.2. (b) b4=10,σ=2 with initial value: x(0)=0.1,y(0)=0.2.

Figure 10. Phase portraits of the system (Equation31(31) dxdτ=y,dydτ=−c2+x2+ϵ(b1y+xy−4b3sin⁡(Ω1τ)−4b4ξ(τ))+o(ϵ2),(31) ) with b3=0,b1=2,b2=3/2,Ω2=2 and ϵ=0.00001. (a) b4=7.5,σ=0.5 with initial value: x(0)=0.1,y(0)=0.2. (b) b4=10,σ=2 with initial value: x(0)=−0.1,y(0)=0.2.