1,078
Views
1
CrossRef citations to date
0
Altmetric
2019 Guangzhou Workshop

Melnikov analysis of chaos in a simple SIR model with periodically or stochastically modulated nonlinear incidence rate

ORCID Icon
Pages 269-288 | Received 27 Sep 2019, Accepted 10 Jan 2020, Published online: 13 Apr 2020

References

  • M.E. Alexander and S.M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci. 189 (2004), pp. 75–96. doi: 10.1016/j.mbs.2004.01.003
  • J.L. Aron and I.B. Schwartz, Seasonality and period-doubling bifurcations in an epidemic model, J. Theor. Biol. 110 (1984), pp. 665–679. doi: 10.1016/S0022-5193(84)80150-2
  • E. Augeraud-Veron and N. Sari, Seasonal dynamics in an SIR epidemic system, J. Math. Biol. 68 (2014), pp. 701–725. doi: 10.1007/s00285-013-0645-y
  • A. Best, The Effects of seasonal forcing on invertebrate-disease interactions with immune priming, Bull. Math. Biol. 75 (2013), pp. 2241–2256. doi: 10.1007/s11538-013-9889-3
  • B.M. Bolker, Chaos and complexity in measles models: A comparative numerical study, IMA J. Math. Appl. Med. Biol. 10 (1993), pp. 83–95. doi: 10.1093/imammb/10.2.83
  • F. Brauer and P. van den Driessche, Models for translation of disease with immigration of infectives, Math. Biosci. 171 (2001), pp. 143–154. doi: 10.1016/S0025-5564(01)00057-8
  • S.N. Chow, C. Li, and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge, Cambridge University Press, 1994.
  • W.R. Derrick and P. van den Driessche, Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population, Discrete Cont. Dyn. Sys. Ser. B 3 (2003), pp. 299–309.
  • O. Diallo and Y. Kon, Melnikov analysis of chaos in a general epidemiological model, Nonlinear Anal. Real World Appl. 8 (2007), pp. 20–26. doi: 10.1016/j.nonrwa.2005.03.032
  • O. Diallo, Y. Kon, and A. Maiga, Melnikov analysis of chaos in an epidemiological model with almost periodic incidence rates, Appl. Math. Sci. 2 (2008), pp. 1377–1386.
  • D.J.D. Earn, P. Rohani, B.M. Bolker, and B.T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science 287 (2000), pp. 667–670. doi: 10.1126/science.287.5453.667
  • S. Ellner and P. Turchin, Chaos in a noisy world: New methods and evidence from time series analysis, Amer. Natur. 145 (1995), pp. 343–375. doi: 10.1086/285744
  • P. Glendinning and L.P. Perry, Melnikov analysis of chaos in a simple epidemiological model, J. Math. Biol. 35 (1997), pp. 359–373. doi: 10.1007/s002850050056
  • J. Greenmail, M. Kamo, and M. Boots, External forcing of ecological and epidemiological systems: A resonance approach, Physica D 190 (2004), pp. 136–151. doi: 10.1016/j.physd.2003.08.008
  • J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York, Springer, 1983.
  • Y. Jin, W.D. Wang, and S.W. Xiao, An SIRS model with a nonlinear incidence rate, Chaos Soliton Fract. 34 (2007), pp. 1482–1497. doi: 10.1016/j.chaos.2006.04.022
  • Yu. A. Kuznetsov and C. Piccardi, Bifurcation analysis of periodic SEIR and SIR epidemic models, J. Math. Biol. 32 (1994), pp. 109–121. doi: 10.1007/BF00163027
  • J.R. Li, W Xu, X.L. Yang, and Z.K. Sun, Chaotic motion of Van der Pol Mathieu Duffing system under bounded noise parametric excitation, J. Sound Vib. 309 (2008), pp. 330–337. doi: 10.1016/j.jsv.2007.05.027
  • Y.K. Lin and G.Q. Cai, Probabilistic Structural Dynamics: Advanced Theory and Applications, McGraw-Hill, NewYork, 1995.
  • W.M. Liu, H.W. Hethcote, and S.A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol. 25 (1987), pp. 359–380. doi: 10.1007/BF00277162
  • W.M. Liu, S.A. Levin, and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol. 23 (1986), pp. 187–204. doi: 10.1007/BF00276956
  • X.Z. Liu and P. Stechlinski, Pulse and constant control schemes for epidemic models with seasonality, Nonlinear Anal. Real World Appl. 12 (2011), pp. 931–946. doi: 10.1016/j.nonrwa.2010.08.017
  • X.Z. Liu and P. Stechlinski, Infectious disease models with time-varying parameters and general nonlinear incidence rate, Appl. Math. Model. 36 (2012), pp. 1974–1994. doi: 10.1016/j.apm.2011.08.019
  • Z.H. Liu and W.Q. Zhu, Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos Soliton Fract. 20 (2004), pp. 593–607. doi: 10.1016/j.chaos.2003.08.010
  • W.Y. Liu, W.Q. Zhu, and Z.L. Huang, Eect of bounded noise on chaotic motion of duffing oscillator under parametric excitation, Chaos Soliton Fract. 12 (2001), pp. 527–537. doi: 10.1016/S0960-0779(00)00002-3
  • Y. Nakata and T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl. 363 (2010), pp. 230–237. doi: 10.1016/j.jmaa.2009.08.027
  • S.M. O'Regan, T.C. Kelly, A. Korobeinikov, M.J.A. O'Callaghan, A.V. Pokrovskii, and D. Rachinskii, Chaos in a seasonally perturbed SIR model: Avian influenza in a seabird colony as a paradigm, J. Math. Biol. 67 (2013), pp. 293–327. doi: 10.1007/s00285-012-0550-9
  • R. Olinky, A. Huppert, and L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol. 56 (2008), pp. 827–839. doi: 10.1007/s00285-007-0140-4
  • L.F. Olsen and W.M. Shaffer, Chaos versus noisy periodicity: Alternative hypotheses for childhood epidemics, Science 249 (1990), pp. 499–504. doi: 10.1126/science.2382131
  • S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ. 188 (2003), pp. 135–163. doi: 10.1016/S0022-0396(02)00089-X
  • W.M. Schaffer and M. Kot, Nearly one-dimensional dynamics in an epidemic, J. Theor. Biol. 112 (1985), pp. 403–427. doi: 10.1016/S0022-5193(85)80294-0
  • G. Sugihara, B.T. Grenfell, and R.M. May, Distinguishing error from chaos in ecological time series, Philos. Trans. Roy. Soc. Lond. Ser. B 330 (1990), pp. 235–251. doi: 10.1098/rstb.1990.0195
  • P. van den Driessche and J. Watmough, Epidemic solutions and endemic catastrophes, Fields Inst. Commun. 36 (2003), pp. 247–257.
  • P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation, J. Math. Biol. 40 (2004), pp. 525–540. doi: 10.1007/s002850000032
  • S. Wiggins, Global Bifurcations and Chaos: Analytical Methods, Springer-Verlag, New York, 1988.
  • S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990.
  • N. Yi, Q.L. Zhang, K. Mao, D.M. Yang, and Q. Li, Analysis and control of an SEIR epidemic system with nonlinear transmission rate, Math. Comput. Model. 50 (2009), pp. 1498–1513. doi: 10.1016/j.mcm.2009.07.014