1,837
Views
5
CrossRef citations to date
0
Altmetric
Articles

Workability, strength and microstructural properties of ground ferronickel slag blended fly ash geopolymer mortar

, & ORCID Icon
Pages 75-87 | Published online: 25 Sep 2020
 

Abstract

This study evaluated the effect of using ground ferronickel slag (GFNS) with fly ash (FA) to produce geopolymer mortar. Workability of mortar was found to decrease with the increase of GFNS content due to its angular shape. Compressive strength was found to maximize at GFNS content of 75%. The 28-day and 90-day compressive strengths of geopolymer mortar using 40% alkaline liquid were 75 and 96 MPa, respectively. The SEM images showed more compact microstructure of geopolymers using GFNS compared to that using 100% fly ash. The quantitative XRD results confirmed the production of amorphous geopolymer product. The energy dispersive X-ray spectra (EDS) revealed that the main reaction product of FA-GFNS geopolymer is sodium magnesium alumino-silicate hydrate (N-M-Al-Si-H) gel, which is provided the denser microstructure and the resulting strength increase by GFNS. The porosity and sorptivity of the mortar were found to decrease with the increase of GFNS.

Acknowledgement

The authors are grateful to SLN, New Caledonia for their support. The authors are also grateful to the John de Laeter Centre for microscopy and microanalysis at Curtin University.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 108.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.