1,837
Views
5
CrossRef citations to date
0
Altmetric
Articles

Workability, strength and microstructural properties of ground ferronickel slag blended fly ash geopolymer mortar

, & ORCID Icon

References

  • Lemonis N, Tsakiridis PE, Katsiotis NS, et al. Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Constr Build Mater. 2015;81:130–139.
  • Wongsa A, Wongkvanklom A, Tanangteerapong D, et al. Comparative study of fire-resistant behaviors of high-calcium fly ash geopolymer mortar containing zeolite and mullite. J Sustain Cement-Based Mater. 2020.
  • Khalifeh M, Saasen A, Vrålstad T, et al. Experimental study on the synthesis and characterization of aplite rock-based geopolymers. J Sustain Cement-Based Mater. 2016;5(4):233–246.
  • El-Hassan H, Ismail N. Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. J Sustain Cement-Based Mater. 2018;7(2):122–140.
  • Ye J, Zhang W, Shi D. Performance evolutions of tailing-slag-based geopolymer under severe conditions. J Sustain Cement-Based Mater. 2015;4(2):101–115.
  • Aboshia AMAA, Rahmat RA, Zain MFM, et al. Early age shrinkage cracking of restrained metakaolin-slag-palm oil fuel ash binder geopolymer mortars. J Sustain Cement-Based Mater. 2018;7(5):271–295.
  • Maragkos I, Giannopoulou IP, Panias D. Synthesis of ferronickel slag-based geopolymers. Miner Eng. 2009;22(2):196–203.
  • Zhang Z, Wang H, Provis JL. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. J Sustain Cement-Based Mater. 2012;1(4):154–166.
  • Alvarez-Ayuso E, Querol X, Plana F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J Hazard Mater. 2008;154(1-3):175–183.
  • Huang Y, Wang Q, Shi M. Characteristics and reactivity of ferronickel slag powder. Constr Build Mater. 2017;156:773–789.
  • Choi YC, Choi S. Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Constr Build Mater. 2015;99:279–287.
  • Saha AK, Sarker PK. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Constr Build Mater. 2016;123:135–142.
  • Saha AK, Sarker PK. Durability characteristics of concrete using ferronickel slag fine aggregate and fly ash. Mag Concr Res. 2018;70(17):865–874.
  • Sun J, Feng J, Chen Z. Effect of ferronickel slag as fine aggregate on properties of concrete. Constr Build Mater. 2019;206:201–209.
  • Saha AK, Sarker PK. Mechanical properties of concrete using ferronickel slag and fine aggregate and supplementary cementitious material. Concr Australia. 2018;44(4):40–44.
  • Wang D, Wang Q, Zhuang S, et al. Evaluation of alkali-activated blast furnace ferronickel slag as a cementitious material: reaction mechanism, engineering properties and leaching behaviors. Constr Build Mater. 2018;188:860–873.
  • Kim H, Lee CH, Ann KY. Feasibility of ferronickel slag powder for cementitious binder in concrete mix. Constr Build Mater. 2019;207:693–705.
  • Chen Y, Ji T, Yang Z, et al. Sustainable use of ferronickel slag in cementitious composites and the effect on chloride penetration resistance. Constr Build Mater. 2020;240:117969.
  • Komnitsas K, Yurramendi L, Bartzas G, et al. Factors affecting co-valorization of fayalitic and ferronickel slags for the production of alkali activated materials. Sci Total Environ. 2020;721:137753.
  • Yang T, Zhang Z, Zhu H, et al. Re-examining the suitability of high magnesium nickel slag as precursors for alkali-activated materials. Constr Build Mater. 2019;213:109–120.
  • Komnitsas K, Zaharaki D, Perdikatsis V. Geopolymerisation of low calcium ferronickel slags. J Mater Sci. 2007;42(9):3073–3082.
  • Komnitsas K, Zaharaki D, Perdikatsis V. Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J Hazard Mater. 2009;161(2-3):760–768.
  • Komnitsas K, Zaharaki D, Bartzas G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl Clay Sci. 2013;73:103–109.
  • Yang T, Yao X, Zhang Z. Geopolymer prepared with high-magnesium nickel slag: characterization of properties and microstructure. Constr Build Mater. 2014;59:188–194.
  • Yang T, Wu Q, Zhu H, et al. Geopolymer with improved thermal stability by incorporating high-magnesium nickel slag. Constr Build Mater. 2017;155:475–484.
  • Zhang Z, Zhu Y, Yang T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology: a case study of high-magnesium nickel slag. J Clean Prod. 2017;141:463–471.
  • Sakkas K, Nomikos P, Sofianos A, et al. Utilisation of FeNi-Slag for the production of inorganic polymeric materials for construction or for passive fire protection. Waste Biomass Valor. 2014;5(3):403–410.
  • Bouaissi A, Li L, Abdullah MMAB, et al. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr Build Mater. 2019;210:198–209.
  • Saha AK, Sarker PK. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: mechanical properties and leaching study. J Clean Prod. 2017;162:438–448.
  • Nath P, Sarker PK. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Concr Compos. 2015;55:205–214.
  • American Society for Testing and Materials (ASTM). Standard test method for flow of hydraulic cement mortar. West Conshohocken (PA): ASTM; 2007. Standard No. ASTM C1437:2007.
  • Australian Standards (AS). Methods of testing concrete method 9: compressive strength tests—concrete, mortar and grout specimens. Sydney, Australia: AS; 2014. Standard No. AS1012.9:2014.
  • American Society for Testing and Materials (ASTM). Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken (PA): ASTM; 2006. Standard No. ASTM C642:2006.
  • American Society for Testing and Materials (ASTM). Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. West Conshohocken (PA): ASTM; 2004. Standard No. ASTM C1585:2004.
  • Abràmofff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophoton Int. 2005;11:36–43.
  • Coelho AA. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J Appl Crystallogr. 2018;51(1):210–218.
  • Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2(2):65–71.
  • Hill RJ, Howard CJ. Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J Appl Crystallogr. 1987;20(6):467–474.
  • Provis JL, Duxson P, van Deventer JSJ. The role of particle technology in developing sustainable construction materials. Adv Powder Technol. 2010;21(1):2–7.
  • Khodr M, Law DW, Gunasekara C, et al. Compressive strength and microstructure evolution of low calcium brown coal fly ash-based geopolymer. J Sustain Cement-Based Mater. 2020;9(1):17–34.
  • Yan S, Sagoe-Crentsil K. Evaluation of fly ash geopolymer mortar incorporating calcined wastepaper sludge. J Sustain Cement-Based Mater. 2016;5(6):370–380.
  • Sathonsaowaphak A, Chindaprasirt P, Pimraksa K. Workability and strength of lignite bottom ash geopolymer mortar. J Hazard Mater. 2009;168(1):44–50.
  • Yaseri S, Hajiaghaei G, Mohammadi F, et al. The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Constr Build Mater. 2017;157:534–545.
  • Hardjito D. Studies of fly ash-based geopolymer concrete [Dissertation]. Perth, Australia: Curtin University; 2005.
  • Abdalqader AF, Jin F, Al-Tabbaa A. Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends. Constr Build Mater. 2015;93:506–513.
  • Chi M, Huang R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr Build Mater. 2013;40:291–298.
  • Singh GVPB, Subramaniam KVL. Effect of active components on strength development in alkali-activated low calcium fly ash cements. J Sustain Cement-Based Mater. 2018;8(1):1–19.
  • Pimraksa K, Chindaprasirt P, Rungchet A, et al. Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Mater Sci Eng A. 2011;528(21):6616–6623.
  • Phair JW, Van Deventer JSJ. Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int J Miner Process. 2002;66(1–4):121–143.
  • Juengsuwattananon K, Winnefeld F, Chindaprasirt P, et al. Correlation between initial SiO2/Al2O3, Na2O/Al2O3, Na2O/SiO2 and H2O/Na2O ratios on phase and microstructure of reaction products of metakaolin-rice husk ash geopolymer. Constr Build Mater. 2019;226:406–417.
  • Cheng Y, Hongqiang M, Hongyu C, et al. Preparation and characterization of coal gangue geopolymers. Constr Build Mater. 2018;187:318–326.
  • Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, et al. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem Concr Res. 2012;42(9):1242–1251.
  • Tho-In T, Sata V, Boonserm K, et al. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. J Clean Prod. 2018;172:2892–2898.
  • Steveson M, Sagoe-Crentsil K. Relationships between composition, structure and strength of inorganic polymers: part 2 Fly ash-derived inorganic polymers. J Mater Sci. 2005;40(16):4247–4259.
  • Provis JL, Lukey GC, Van Deventer JSJ. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem. Mater. 2005;17(12):3075–3085.
  • Duxson P, Fernández-Jiménez A, Provis JL, et al. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42(9):2917–2933.
  • Zaharaki D, Komnitsas K, Perdikatsis V. Use of analytical techniques for identification of inorganic polymer gel composition. J Mater Sci. 2010;45(10):2715–2724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.