400
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

A multi-commodity network flow model for railway capacity optimization in case of line blockage

, & ORCID Icon
Pages 297-320 | Received 17 Jun 2018, Accepted 15 Jan 2019, Published online: 28 Jan 2019
 

ABSTRACT

In this study, a multi-commodity network flow model is proposed to optimize the railroad capacity under temporary line blockage. The proposed model enables the assessment of residual railroad capacity under heterogeneous traffic condition. The model searches for an optimized train timetable to maximize the number of possible train paths by maintaining acceptable percentages of delayed trains. Computational experiments are conducted on instances of Iran railway to evaluate the performance of the model regarding computational efficiency and solution quality. The outcomes demonstrate an average optimality gap of about 3.7% which quantifies the effectiveness of the optimization model within a reasonable computational time. The output of the optimization model has been compared with the UIC406 (International Union of Railway) standard. The proposed optimization model could generate a more realistic solution in comparison with UIC406 method. According to the obtained result, the maximum capacity of the rail line increases by approximately 26.7% compared with UIC 406 code.

Acknowledgments

The author would like to thank the reviewers for their valuable comments and suggestions which helped to improve the paper. The authors also thank the administration of the Islamic Republic of Iran Railways.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 306.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.