183
Views
0
CrossRef citations to date
0
Altmetric
Articles

Motion of a Neutrally Buoyant Circular Particle in a Lid-Driven Square Cavity: A Numerical Study

, , , , &
Pages 222-237 | Published online: 18 Jul 2022
 

Abstract

Understanding, predicting and controlling the motion of the solid particles in a confined cavity is significant. The motion of a neutrally buoyant circular particle in a lid-driven square cavity is studied with the lattice Boltzmann method, where the effects of the initial position, particle size and Reynolds number are investigated. The obvious characteristic of the motion of the circular particle is the existence of the limit cycle, which is the competitive result of the inertia, wall-repulsion force and vortex behavior. The limit cycle is insensitive to the initial position of the circular particle, namely, no matter where the circular particle is placed initially, the limit cycle is the same. With the increase of the particle size, the wall-repulsion force becomes stronger, which is dominant over the centrifugal force, and the limit cycle shrinks toward the center of the square cavity. With the increase of the Reynolds number, a new secondary vortex develops at the top left corner of the square cavity, and the limit cycle is pushed toward the bottom right corner of the square cavity.

Acknowledgment

The project is supported by the National Natural Science Foundation of China (51909235).

Data availability statement

Data will be made available on reasonable request.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 944.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.