183
Views
0
CrossRef citations to date
0
Altmetric
Articles

Motion of a Neutrally Buoyant Circular Particle in a Lid-Driven Square Cavity: A Numerical Study

, , , , &

References

  • Erturk, E. 2009. Discussions on driven cavity flow. Int. J. Numer. Meth. Fluids 60 (3):275–94. doi:10.1002/fld.1887
  • Erturk, E., and C. Gokcol. 2006. Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers. Int. J. Numer. Meth. Fluids 50 (4):421–36. doi:10.1002/fld.1061
  • Erturk, E., T. Corke, and C. Gokcol. 2005. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Meth. Fluids 48 (7):747–74. doi:10.1002/fld.953
  • Francesco, R., and C. Hendrik. 2017. Particle-boundary interaction in a shear-driven cavity flow. Theor. Comput. Fluid Dyn. 31:1–19.
  • Ghia, U., K. Ghia, and C. Shin. 1982. High-re solutions for imcompressible flow using the Navier-Stokes equations and a multigrid method. Comput. Phys. 48 (3):387–411. doi:10.1016/0021-9991(82)90058-4
  • Guo, Z., C. Zheng, and B. Shi. 2002. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11:366–74.
  • He, W., X. Lv, F. Pan, X. Li, and Z. Yan. 2019. Novel preparation process of iron powders with semisteel by rotary cup atomizer. Powder Technol. 356:1087–96. doi:10.1016/j.powtec.2019.09.009
  • Hu, J., and Z. Guo. 2019. Effect of interaction between a particle cluster and a single particle on particle motion and distribution during sedimentation: A numerical study. Physics of Fluids 31:033301.
  • Hu, J., S. Tao, and Z. Guo. 2017. An efficient unified iterative scheme for moving boundaries in lattice Boltzmann method. Comput. Fluids 144:34–43. doi:10.1016/j.compfluid.2016.12.007
  • James, J.,. M. Rachel, and M. Christian. 2015. Ultrasound-propelled nanocups for drug delivery. Small 11:5305–14.
  • Kevin, W., L. Taehun, and F. Jeffrey. 2015. Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid-gas-particle systems. Comput. Phys. 283:453–77.
  • Kosinski, P., A. Kosinska, and A. Hoffmann. 2009. Simulation of solid particles behaviour in a driven cavity flow. Powder Technol. 191 (3):327–39. doi:10.1016/j.powtec.2008.10.025
  • Ladd, A., and R. Verberg. 2001. Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104 (5/6):1191–251. doi:10.1023/A:1010414013942
  • Lantermann, U., and D. Hanel. 2007. Particle Monte Carlo and lattice-Boltzmann methods for simulations of gas-particle flows. Comput. Fluids 36 (2):407–22. doi:10.1016/j.compfluid.2005.10.005
  • Liu, J., C. Huang, Z. Chai, and B. Shi. 2022. A diffuse-interface lattice Boltzmann method for fluid-particle interaction problems. Comput. Fluids 233:105240. doi:10.1016/j.compfluid.2021.105240
  • Madankan, R., S. Pouget, P. Singla, M. Bursik, J. Dehn, M. Jones, A. Patra, M. Pavolonis, E. B. Pitman, T. Singh, et al. 2014. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion. Comput. Phys. 271:39–59. doi:10.1016/j.jcp.2013.11.032
  • Qian, Y., D. Humieres, and P. Lallemand. 1992. Lattice BGK models for Navier-Stokes equations. Europhys. Lett. 17 (6):479–84. doi:10.1209/0295-5075/17/6/001
  • Safdari, A., and K. Kim. 2014. Lattice Boltzmann simulation of solid particles behavior in a three-dimensional lid-driven cavity flow. Comput. Math. Appl. 68 (5):606–21. doi:10.1016/j.camwa.2014.07.004
  • Safdari, A., and K. Kim. 2015. Lattice Boltzmann simulation of the three-dimensional moitons of particles with various density ratios in lid-driven cavity flow. Appl. Math. Comput. 265:826–43. doi:10.1016/j.amc.2015.05.106
  • Shahab, K., and M. Joao. 2014. A detailed study of lid-driven cavity flow at moderate Reynolds numbers using incompressible SPH. Int. J. Numer. Methods Fluids 76:653–68.
  • Shankar, P., and M. Deshpande. 2000. Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32 (1):93–136. doi:10.1146/annurev.fluid.32.1.93
  • Sidika, N., and A. Safdari. 2012. Numerical prediction of dynamics of solid particle in lid-driven cavity flow. AIP Conference Proceedings, 1440: 1012–7.
  • Sommerfeld, M., and Z. Qadir. 2018. Fluid dynamic forces acting on irregular shaped particles: Simulations by the Lattice-Boltzmann method. Int. J. Multiphase Flow 101:212–22. doi:10.1016/j.ijmultiphaseflow.2018.01.016
  • Stephen, T., and E. Nathan. 2007. Sediment storage and evacuation in headwater valleys at the transition between debris-flow and fluvial processes. Geology 35:1027–30.
  • Tsorng, S., H. Capart, J. Lai, and D. Young. 2006. Three-dimensional tracking of the long time trajectories of suspended particles in a lid-driven cavity flow. Exp. Fluids 40 (2):314–28. doi:10.1007/s00348-005-0070-0
  • Wan, D., and S. Turek. 2006. Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int. J. Numer. Meth. Fluids 51 (5):531–66. doi:10.1002/fld.1129
  • Wang, L.-P., C. Peng, Z. Guo, and Z. Yu. 2016. Lattice Boltzmann simulation of particle-laden turbulent channel flow. Comput. Fluids 124:226–36. doi:10.1016/j.compfluid.2015.07.008
  • Wen, B., C. Zhang, Y. Tu, C. Wang, and H. Fang. 2014. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations. Comput. Phys. 266:161–70. doi:10.1016/j.jcp.2014.02.018
  • Wu, J., and C. Shu. 2010. Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme. Commun. Comput. Phys. 7 (4):793–812. doi:10.4208/cicp.2009.09.054
  • Yue, G., R. Cai, J. Lu, and H. Zhang. 2017. From a CFB reactor to a CFB boiler - The review of R&D progress of CFB coal combustion technology in China. Powder Technol. 316:18–28. doi:10.1016/j.powtec.2016.10.062
  • Zhong, H., J. Zhou, Z. Du, and L. Xie. 2018. A laboratory experimental study on laser attenuations by dust/sand storms. J. Aerosol Sci. 121:31–7. doi:10.1016/j.jaerosci.2018.04.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.