171
Views
65
CrossRef citations to date
0
Altmetric
Article

The Cryptococcus neoformans Rim101 Transcription Factor Directly Regulates Genes Required for Adaptation to the Host

, , , , &
Pages 673-684 | Received 10 Oct 2013, Accepted 01 Dec 2013, Published online: 20 Mar 2023
 

Abstract

The Rim101 protein is a conserved pH-responsive transcription factor that mediates important interactions between several fungal pathogens and the infected host. In the human fungal pathogen Cryptococcus neoformans, the Rim101 protein retains conserved functions to allow the microorganism to respond to changes in pH and other host stresses. This coordinated cellular response enables this fungus to effectively evade the host immune response. Preliminary studies suggest that this conserved transcription factor is uniquely regulated in C. neoformans both by the canonical pH-sensing pathway and by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Here we present comparative transcriptional data that demonstrate a strong concordance between the downstream effectors of PKA and Rim101. To define Rim101-dependent gene expression during a murine lung infection, we used nanoString profiling of lung tissue infected with a wild-type or rim101Δ mutant strain. In this setting, we demonstrated that Rim101 controls the expression of multiple cell wall-biosynthetic genes, likely explaining the enhanced immunogenicity of the rim101Δ mutant. Despite its divergent upstream regulation, the C. neoformans Rim101 protein recognizes a conserved DNA binding motif. Using these data, we identified direct targets of this transcription factor, including genes involved in cell wall regulation. Therefore, the Rim101 protein directly controls cell wall changes required for the adaptation of C. neoformans to its host environment. Moreover, we propose that integration of the cAMP/PKA and pH-sensing pathways allows C. neoformans to respond to a broad range of host-specific signals.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/MCB.01359-13.

ACKNOWLEDGMENTS

We thank the Duke Sequencing Core Facility and the Duke Light Microscopy Core Facility for assistance.

These studies were supported by NIH grants AI050128 and AI074677 (to J.A.A.), an American Heart Association Pre-doctoral Fellowship (to T.R.O.), Department of Energy grant DE023311 (to A.P.M.), and support from the Richard King Mellon Foundation (to A.P.M.).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.