171
Views
65
CrossRef citations to date
0
Altmetric
Article

The Cryptococcus neoformans Rim101 Transcription Factor Directly Regulates Genes Required for Adaptation to the Host

, , , , &
Pages 673-684 | Received 10 Oct 2013, Accepted 01 Dec 2013, Published online: 20 Mar 2023

REFERENCES

  • Alspaugh J, Perfect J, Heitman J. 1998. Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans. Fungal Genet. Biol. 25:1–14. http://dx.doi.org/10.1006/fgbi.1998.1079.
  • O'Meara TR, Alspaugh JA. 2012. The Cryptococcus neoformans capsule: a sword and a shield. Clin. Microbiol. Rev. 25:387–408. http://dx.doi.org/10.1128/CMR.00001-12.
  • Dykstra MA, Friedman L, Murphy JW. 1977. Capsule size of Cryptococcus neoformans: control and relationship to virulence. Infect. Immun. 16:129–135.
  • Kozel T, Gotschlich E. 1982. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J. Immunol. 129:1675–1680.
  • Chang YC, Kwon-Chung KJ. 1994. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol. Cell. Biol. 14:4912–4919.
  • Chang YC, Penoyer LA, Kwon-Chung KJ. 1996. The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect. Immun. 64:1977–1983.
  • Doering TL. 2009. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu. Rev. Microbiol. 63:223–247. http://dx.doi.org/10.1146/annurev.micro.62.081307.162753.
  • O'Meara TR, Norton D, Price MS, Hay C, Clements MF, Nichols CB, Alspaugh JA. 2010. Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog. 6:e1000776. http://dx.doi.org/10.1371/journal.ppat.1000776.
  • O'Meara TR, Holmer SM, Selvig K, Dietrich F, Alspaugh JA. 2013. Cryptococcus neoformans Rim101 is associated with cell wall remodeling and evasion of the host immune responses. mBio 4(1):e00522–12. http://dx.doi.org/10.1128/mBio.00522-12.
  • Caddick MX, Brownlee AG, Arst HN. 1986. Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol. Gen. Genet. 203:346–353. http://dx.doi.org/10.1007/BF00333978.
  • Su SSY, Mitchell AP. 1993. Molecular characterization of the yeast meiotic regulatory gene RIM1. Nucleic Acids Res. 21:3789–3797. http://dx.doi.org/10.1093/nar/21.16.3789.
  • Li W, Mitchell AP. 1997. Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63–73.
  • Lamb T, Xu W, Diamond A, Mitchell AP. 2001. Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J. Biol. Chem. 276:1850–1856. http://dx.doi.org/10.1074/jbc.M008381200.
  • Herranz S, Rodriguez JM, Bussink H-J, Sanchez-Ferrero JC, Arst HNJr, Penalva MA, Vincent O. 2005. Arrestin-related proteins mediate pH signaling in fungi. Proc. Natl. Acad. Sci. U. S. A. 102:12141–12146. http://dx.doi.org/10.1073/pnas.0504776102.
  • Calcagno-Pizarelli AM, Negrete-Urtasun S, Denison SH, Rudnicka JD, Bussink H-J, Munera-Huertas T, Stanton L, Hervás-Aguilar A, Espeso EA, Tilburn J, Arst HNJr, Peñalva MA. 2007. Establishment of the ambient pH signaling complex in Aspergillus nidulans: PalI assists plasma membrane localization of PalH. Eukaryot. Cell 6:2365–2375. http://dx.doi.org/10.1128/EC.00275-07.
  • Galindo A, Hervás-Aguilar A, Rodríguez-Galán O, Vincent O, Arst HNJr, Tilburn J, Peñalva MA. 2007. PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic 8:1346–1364. http://dx.doi.org/10.1111/j.1600-0854.2007.00620.x.
  • Cornet M, Bidard F, Schwarz P, Da Costa G, Blanchin-Roland S, Dromer F, Gaillardin C. 2005. Deletions of endocytic components VPS28 and VPS32 affect growth at alkaline pH and virulence through both RIM101-dependent and RIM101-independent pathways in Candida albicans. Infect. Immun. 73:7977–7987. http://dx.doi.org/10.1128/IAI.73.12.7977-7987.2005.
  • Hayashi M, Fukuzawa T, Sorimachi H, Maeda T. 2005. Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol. Cell. Biol. 25:9478–9490. http://dx.doi.org/10.1128/MCB.25.21.9478-9490.2005.
  • Rothfels K, Tanny JC, Molnar E, Friesen H, Commisso C, Segall J. 2005. Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 25:6772–6788. http://dx.doi.org/10.1128/MCB.25.15.6772-6788.2005.
  • Herrador A, Herranz S, Lara D, Vincent O. 2010. Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein. Mol. Cell. Biol. 30:897–907. http://dx.doi.org/10.1128/MCB.00132-09.
  • Li M, Martin SJ, Bruno VM, Mitchell AP, Davis DA. 2004. Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot. Cell 3:741–751. http://dx.doi.org/10.1128/EC.3.3.741-751.2004.
  • Mingot JM, Espeso EA, Diez E, Penalva MA. 2001. Ambient pH signaling regulates nuclear localization of the Aspergillus nidulans PacC transcription factor. Mol. Cell. Biol. 21:1688–1699. http://dx.doi.org/10.1128/MCB.21.5.1688-1699.2001.
  • Cadieux B, Lian T, Hu G, Wang J, Biondo C, Teti G, Liu V, Murphy MEP, Creagh AL, Kronstad JW. 2013. The mannoprotein Cig1 supports iron acquisition from heme and virulence in the pathogenic fungus Cryptococcus neoformans. J. Infect. Dis. 207:1339–1347. http://dx.doi.org/10.1093/infdis/jit029.
  • Jung WH, Saikia S, Hu G, Wang J, Fung CK-Y, D'Souza C, White R, Kronstad JW. 2010. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans. PLoS Pathog. 6:e1001209. http://dx.doi.org/10.1371/journal.ppat.1001209.
  • Aréchiga-Carvajal E, Ruiz-Herrera J. 2005. The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. Eukaryot. Cell 4:999–1008. http://dx.doi.org/10.1128/EC.4.6.999-1008.2005.
  • Davis D, Wilson RB, Mitchell AP. 2000. RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol. Cell. Biol. 20:971–978. http://dx.doi.org/10.1128/MCB.20.3.971-978.2000.
  • Davis D. 2003. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr. Genet. 44:1–7. http://dx.doi.org/10.1007/s00294-003-0415-2.
  • Bensen E, Martin SJ, Li M, Berman J, Davis DA. 2004. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol. Microbiol. 54:1335–1351. http://dx.doi.org/10.1111/j.1365-2958.2004.04350.x.
  • Espeso EA, Tilburn J, Arst HNJr, Penalva MA. 1993. pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J. 12:3947–3956.
  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HNJr. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 14:779–790.
  • Peñalva MA, Tilburn J, Bignell E, Arst HNJr. 2008. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 16:291–300. http://dx.doi.org/10.1016/j.tim.2008.03.006.
  • Ramón AM, Fonzi WA. 2003. Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot. Cell 2:718–728. http://dx.doi.org/10.1128/EC.2.4.718-728.2003.
  • Lamb TM, Mitchell AP. 2003. The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 23:677–686. http://dx.doi.org/10.1128/MCB.23.2.677-686.2003.
  • Baek Y, Li M, Davis D. 2008. Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. Eukaryot. Cell 7:1168–1179. http://dx.doi.org/10.1128/EC.00108-08.
  • Baek Y-U, Martin SJ, Davis DA. 2006. Evidence for novel pH-dependent regulation of Candida albicans Rim101, a direct transcriptional repressor of the cell wall beta-glycosidase Phr2. Eukaryot. Cell 5:1550–1559. http://dx.doi.org/10.1128/EC.00088-06.
  • Espeso EA, Penalva MA. 1996. Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J. Biol. Chem. 271:28825–28830. http://dx.doi.org/10.1074/jbc.271.46.28825.
  • Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. http://dx.doi.org/10.1093/bioinformatics/btp120.
  • Cramer KL, Gerrald QD, Nichols CB, Price MS, Alspaugh JA. 2006. Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans. Eukaryot. Cell 5:1147–1156. http://dx.doi.org/10.1128/EC.00145-06.
  • Chun CD, Brown JCS, Madhani HD. 2011. A major role for capsule-independent phagocytosis-inhibitory mechanisms in mammalian infection by Cryptococcus neoformans. Cell Host Microbe 9:243–251. http://dx.doi.org/10.1016/j.chom.2011.02.003.
  • Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3:1101–1108. http://dx.doi.org/10.1038/nprot.2008.73.
  • Chang YC, Lamichhane AK, Kwon-Chung KJ. 2012. Role of actin-bundling protein Sac6 in growth of Cryptococcus neoformans at low oxygen concentration. Eukaryot. Cell 11:943–951. http://dx.doi.org/10.1128/EC.00120-12.
  • Shedletzky E, Unger C, Delmer DP. 1997. A microtiter-based fluorescence assay for (1,3)-β-glucan synthases. Anal. Biochem. 249:88–93. http://dx.doi.org/10.1006/abio.1997.2162.
  • Fox DS, Cox GM, Heitman J. 2003. Phospholipid-binding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans. Eukaryot. Cell 2:1025–1035. http://dx.doi.org/10.1128/EC.2.5.1025-1035.2003.
  • Fanning S, Xu W, Solis N, Woolford CA, Filler SG, Mitchell AP. 2012. Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot. Cell 11:896–904. http://dx.doi.org/10.1128/EC.00103-12.
  • Boj SF, Petrov D, Ferrer J. 2010. Epistasis of transcriptomes reveals synergism between transcriptional activators Hnf1a and Hnf4a. PLoS Genet. 6:e1000970. http://dx.doi.org/10.1371/journal.pgen.1000970.
  • Fanning S, Xu W, Beaurepaire C, Suhan JP, Nantel A, Mitchell AP. 2012. Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1. Mol. Microbiol. 86:284–302. http://dx.doi.org/10.1111/j.1365-2958.2012.08193.x.
  • Baker LG, Specht CA, Donlin MJ, Lodge JK. 2007. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot. Cell 6:855–867. http://dx.doi.org/10.1128/EC.00399-06.
  • Baker LG, Specht CA, Lodge JK. 2009. Chitinases are essential for sexual development but not vegetative growth in Cryptococcus neoformans. Eukaryot. Cell 8:1692–1705. http://dx.doi.org/10.1128/EC.00227-09.
  • Baker LG, Specht CA, Lodge JK. 2011. Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans. Eukaryot. Cell 10:1264–1268. http://dx.doi.org/10.1128/EC.05138-11.
  • Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK. 2005. A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot. Cell 4:1902–1912. http://dx.doi.org/10.1128/EC.4.11.1902-1912.2005.
  • Xu W, Mitchell AP. 2001. Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J. Bacteriol. 183:6917–6923. http://dx.doi.org/10.1128/JB.183.23.6917-6923.2001.
  • Idnurm A, Walton FJ, Floyd A, Reedy JL, Heitman J. 2009. Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signature-tagged insertional mutagenesis. Eukaryot. Cell 8:315–326. http://dx.doi.org/10.1128/EC.00375-08.
  • Jung WH, Sham A, Lian T, Singh A, Kosman DJ, Kronstad JW. 2008. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog. 4:e45. http://dx.doi.org/10.1371/journal.ppat.0040045.
  • O'Meara TR, Hay C, Price MS, Giles S, Alspaugh JA. 2010. Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host. Eukaryot. Cell 9:1193–1202. http://dx.doi.org/10.1128/EC.00098-10.
  • Ko Y-J, Yu YM, Kim G-B, Lee G-W, Maeng PJ, Kim S, Floyd A, Heitman J, Bahn Y-S. 2009. Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot. Cell 8:1197–1217. http://dx.doi.org/10.1128/EC.00120-09.
  • Haynes BC, Skowyra ML, Spencer SJ, Gish SR, Williams M, Held EP, Brent MR, Doering TL. 2011. Toward an integrated model of capsule regulation in Cryptococcus neoformans. PLoS Pathog. 7:e1002411. http://dx.doi.org/10.1371/journal.ppat.1002411.
  • Caracuel Z, Roncero MIG, Espeso EA, González-Verdejo CI, García-Maceira FI, Di Pietro A. 2003. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol. Microbiol. 48:765–779. http://dx.doi.org/10.1046/j.1365-2958.2003.03465.x.
  • Peñas MM, Hervas-Aguilar A, Munera-Huertas T, Reoyo E, Penalva MA, Arst HNJr, Tilburn J. 2007. Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. Eukaryot. Cell 6:960–970. http://dx.doi.org/10.1128/EC.00047-07.
  • Pukkila-Worley R, Gerrald QD, Kraus PR, Boily M-J, Davis MJ, Giles SS, Cox GM, Heitman J, Alspaugh JA. 2005. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot. Cell 4:190–201. http://dx.doi.org/10.1128/EC.4.1.190-201.2005.
  • Jung K-W, Strain AK, Nielsen K, Jung K-H, Bahn Y-S. 2012. Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genet. Biol. 49:332–345. http://dx.doi.org/10.1016/j.fgb.2012.02.001.
  • D'Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J. 2001. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol. Cell. Biol. 21:3179–3191. http://dx.doi.org/10.1128/MCB.21.9.3179-3191.2001.
  • Hu G, Steen BR, Lian T, Sham AP, Tam N, Tangen KL, Kronstad JW. 2007. Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog. 3:e42. http://dx.doi.org/10.1371/journal.ppat.0030042.
  • Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault J-S, Nantel A, Mitchell AP, Filler SG. 2008. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell. Microbiol. 10:2180–2196. http://dx.doi.org/10.1111/j.1462-5822.2008.01198.x.
  • Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A. 2007. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect. Immun. 75:2126–2135. http://dx.doi.org/10.1128/IAI.00054-07.
  • Castrejon F, Gomez A, Sanz M, Duran A, Roncero C. 2006. The RIM101 pathway contributes to yeast cell wall assembly and its function becomes essential in the absence of mitogen-activated protein kinase Slt2p. Eukaryot. Cell 5:507–517. http://dx.doi.org/10.1128/EC.5.3.507-517.2006.
  • Espeso EA, Arst HN. 2000. On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol. Cell. Biol. 20:3355–3363. http://dx.doi.org/10.1128/MCB.20.10.3355-3363.2000.
  • Lee A, Toffaletti DL, Tenor J, Soderblom EJ, Thompson JW, Moseley MA, Price M, Perfect JR. 2010. Survival defects of Cryptococcus neoformans mutants exposed to human cerebrospinal fluid result in attenuated virulence in an experimental model of meningitis. Infect. Immun. 78:4213–4225. http://dx.doi.org/10.1128/IAI.00551-10.
  • Ding C, Festa RA, Chen Y-L, Espart A, Palacios O, Espin J, Capdevila M, Atrian S, Heitman J, Thiele DJ. 2013. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 13:265–276. http://dx.doi.org/10.1016/j.chom.2013.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.