35
Views
16
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Poly(A)-Driven and Poly(A)-Assisted Termination: Two Different Modes of Poly(A)-Dependent Transcription Termination

, , , , , & show all
Pages 276-289 | Received 28 Jul 1997, Accepted 13 Oct 1997, Published online: 28 Mar 2023
 

ABSTRACT

We mapped the elements that mediate termination of transcription downstream of the chicken βH- and βA-globin gene poly(A) sites. We found no unique element and no segment of 3′-flanking DNA to be significantly more effective than any other. When we replaced the native 3′-flanking DNA with bacterial DNA, it too supported transcription termination. Termination in the bacterial DNA depended on a functional poly(A) signal, which apparently compelled termination to occur in the downstream DNA with little regard for its sequence. We also studied premature termination by poorly processive polymerases close to the promoter. The rate of premature termination varied for different DNA sequences. However, the efficiencies of poly(A)-driven termination and promoter-proximal premature termination varied similarly on different DNAs, suggesting that poly(A)-driven termination functions by returning the transcription complex to a form which resembles a prior state of low processivity. The poly(A)-driven termination described here differs dramatically from the poly(A)-assisted termination previously described for the simian virus 40 (SV40) early transcription unit. In the SV40 early transcription unit, essentially no termination occurs downstream of the poly(A) site unless a special termination element is present. The difference between the βH-globin and SV40 modes of termination is governed by sequences in the upstream DNA. For maximum efficiency, the βH-globin poly(A) signal required the assistance of upstream enhancing sequences. Moreover, the SV40 early poly(A) signal also drove termination in βH-globin style when it was placed in a βH-globin sequence context. These studies were facilitated by a rapid, improved method of run-on transcription analysis, based on the use of a vector containing two G-free cassettes.

ACKNOWLEDGMENTS

We thank E. Erickson for carrying out some preliminary work at the inception of this study, N. Nguyen for constructing some of the plasmids used and for communicating unpublished results, and R. Landick for providing plasmid pRL542.

This work was supported by NIH grant GM50863.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.