14
Views
27
CrossRef citations to date
0
Altmetric
Gene Expression

Yeast Pre-mRNA Splicing Requires a Pair of U1 snRNP-Associated Tetratricopeptide Repeat Proteins

&
Pages 353-360 | Received 19 Aug 1997, Accepted 16 Oct 1997, Published online: 28 Mar 2023
 

ABSTRACT

The U1 snRNP functions to nucleate spliceosome assembly on newly transcribed pre-mRNA. Saccharomyces cerevisiae is unusual among eukaryotes in the greatly extended length of its U1 snRNA and the apparent increased polypeptide complexity of the corresponding U1 snRNP. In this paper, we report the identification of a novel U1 snRNP protein, Prp42p, with unexpected properties. Prp42p was identified by its surprising structural similarity to the essential U1 snRNP protein, Prp39p. Both Prp39p and Prp42p possess multiple copies of a variant tetratricopeptide repeat, an element implicated in a wide range of protein assembly events. Yeast strains depleted of Prp42p by transcriptional repression of a GAL1::PRP42fusion gene arrest for splicing prior to pre-mRNA 5′ splice site cleavage. Prp42p was not observed in a recent biochemical analysis of purified U1 snRNPs from S. cerevisiae (28). Nevertheless, antibodies directed against an epitope-tagged version of Prp42p specifically precipitate U1 snRNA from yeast extracts. Furthermore, Prp42p is required for U1 snRNP biogenesis, because yeast strains depleted of Prp42p formed incomplete U1 snRNPs that failed to produce stable complexes with pre-mRNA in vitro. The evidence shows that Prp39p and Prp42p are both required to configure the atypical yeast U1 snRNP into a structure compatible with its evolutionarily conserved role in pre-mRNA splicing.

ACKNOWLEDGMENTS

We thank Charles Query, Martha Peterson, John Woolford, and our laboratory colleagues for helpful comments on the manuscript. Carol Williams and Kevin O’Hare are thanked for pointing out the TPRs within Su(f). Seyung Chung is gratefully acknowledged for assistance with the Prp39p-Prp42p TPR alignments, and Elizabeth Otte is acknowledged for help with the quantitative analysis of the snRNA levels.

This work was supported by grant GM42476 from the National Institutes of Health to B.C.R.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.