14
Views
27
CrossRef citations to date
0
Altmetric
Gene Expression

Yeast Pre-mRNA Splicing Requires a Pair of U1 snRNP-Associated Tetratricopeptide Repeat Proteins

&
Pages 353-360 | Received 19 Aug 1997, Accepted 16 Oct 1997, Published online: 28 Mar 2023

REFERENCES

  • Abovich, N., X. C. Liao, and M. Rosbash 1994. The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition. Genes Dev. 8: 843–854.
  • Abovich, N., and M. Rosbash 1997. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89: 403–412.
  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
  • Arning, S., P. Gruter, G. Bilbe, and A. Krämer 1996. Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA 2: 794–810.
  • Berglund, J. A., K. Chua, N. Abovich, R. Reed, and M. Rosbash 1997. The specificity factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 89: 781–787.
  • Blanton, S., A. Srinivasan, and B. C. Rymond 1992. PRP38 encodes a yeast protein required for pre-mRNA splicing and maintenance of stable U6 small nuclear RNA levels. Mol. Cell. Biol. 12: 3939–3947.
  • Chung, S., and B. C. Rymond. Unpublished observations.
  • Drysdale, R., E. Rushton, and M. Bate 1993. Genes for embryonic muscle development in Drosophila melanogaster. Roux’s Arch. Dev. Biol. 202: 276–295.
  • Fromont-Racine, M., J. C. Rain, and P. Legrain 1997. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat. Genet. 16: 277–282.
  • Fu, X.-D. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1: 663–680.
  • Gindhart, J. G.Jr., and L. S. Goldstein 1996. Tetratrico peptide repeats are present in the kinesin light chain. Trends Biochem. Sci. 21: 52–53.
  • Goebl, M., and M. Yanagida 1991. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem. Sci. 16: 173–177.
  • Guthrie, C. 1991. Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science 253: 157–163.
  • Habets, W. J., P. T. Sillekens, M. H. Hoet, J. A. Schalken, A. J. M. Roebroek, J. A. M. Leuissen, W. J. M. van de Ven, and W. J. Venrooij 1987. Analysis of a cDNA clone expressing a human autoimmune antigen. Full length sequence of the U2 small nuclear RNA-associated B" antigen. Proc. Natl. Acad. Sci. USA 84: 2421–2425.
  • Hermann, H., P. Fabrizio, V. A. Raker, K. Fouaki, H. Hornig, H. Brahms, and R. Lührmann 1995. SnRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J. 14: 2076–2088.
  • Johnston, M., and R. W. Davis 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1440–1448.
  • Kao, H. Y., and P. G. Siliciano 1996. Identification of Prp40, a novel essential yeast splicing factor associated with the U1 small nuclear ribonucleoprotein particle. Mol. Cell. Biol. 16: 960–967.
  • Krämer, A. 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65: 367–409.
  • Kretzner, L., A. Krol, and M. Rosbash 1990. Saccharomyces cerevisiae U1 small nuclear RNA secondary structure contains both universal and yeast-specific domains. Proc. Natl. Acad. Sci. USA 87: 851–855.
  • Kretzner, L., B. C. Rymond, and M. Rosbash 1987. S. cerevisiae U1 RNA is large and has limited primary sequence homology to metazoan U1 snRNA. Cell 50: 593–602.
  • Lamb, J. R., S. Tugendreich, and P. Hieter 1995. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem. Sci. 20: 257–259.
  • Lauber, J., P. Fabrizio, S. Teigelkamp, W. S. Lane, E. Hartmann, and R. Lührmann 1996. The HeLa 200 kDa U5 snRNP-specific protein and its homolog in Saccharomyces cerevisiae are members of the DEXH-box protein family of putative RNA helicases. EMBO J. 15: 4001–4015.
  • Legrain, P., and A. Choulika 1990. The molecular characterization of PRP6 and PRP9 yeast genes reveals a new cysteine/histidine motif common to several splicing factors. EMBO J. 9: 2775–2781.
  • Legrain, P., B. Seraphin, and M. Rosbash 1988. Early commitment of yeast pre-mRNA to the spliceosome pathway. Mol. Cell. Biol. 8: 3755–3760.
  • Liao, X., L. Kretzner, B. Seraphin, and M. Rosbash 1990. Universally conserved and yeast-specific U1 snRNA sequences are important but not essential for U1 snRNP function. Genes Dev. 4: 1766–1774.
  • Liao, X. C., J. Tang, and M. Rosbash 1993. An enhancer screen identifies a gene that encodes the yeast U1 snRNP A protein: implications for snRNP protein function in pre-mRNA splicing. Genes Dev. 7: 419–428.
  • Lockhart, S. R., and B. C. Rymond 1994. Commitment of yeast pre-mRNA to the splicing pathway requires a novel small nuclear ribonucleoprotein polypeptide, Prp39p. Mol. Cell. Biol. 14: 3623–3633.
  • Lockhart, S. R., and B. C. Rymond. Unpublished observations.
  • Moore, M. J., C. C. Query, and P. A. Sharp 1993. Splicing of precursors to mRNA by the spliceosome The RNA world. In: Gesteland, R. F., and J. F. Atkins303–357Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Neubauer, G., A. Gottschalk, P. Fabrizio, B. Seraphin, R. Lührmann, and M. Mann 1997. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl. Acad. Sci. USA 94: 385–390.
  • Pikielny, C. W., and M. Rosbash 1986. Specific small nuclear RNAs are associated with yeast spliceosomes. Cell 45: 869–877.
  • Pikielny, C. W., B. C. Rymond, and M. Rosbash 1986. Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Nature 342: 341–345.
  • Rosbash, M. Personal communication.
  • Rosbash, M., and B. Seraphin 1991. Who’s on first? The U1 snRNP-5′ splice site interaction and splicing. Trends Biochem. Sci. 16: 187–190.
  • Roy, J., B. Zheng, B. C. Rymond, Woolford J. L., Jr. 1995. Structurally related but functionally distinct yeast Sm D core small nuclear ribonucleoprotein particle proteins. Mol. Cell. Biol. 15: 445–455.
  • Rymond, B. C. 1993. Convergent transcripts of the yeast PRP38-SMD1 locus encode two essential splicing factors, including the D1 core polypeptide of small nuclear ribonucleoprotein particles. Proc. Natl. Acad. Sci. USA 90: 848–852.
  • Rymond, B. C., and M. Rosbash 1985. Cleavage of 5′ splice site and lariat formation are independent of 3′ splice site in yeast mRNA splicing. Nature 317: 735–737.
  • Seraphin, B. 1995. Sm and Sm-like proteins belong to a large family: identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. EMBO J. 14: 2089–2098.
  • Seraphin, B., and M. Rosbash 1991. The yeast branchpoint sequence is not required for the formation of a stable U1 snRNA-pre-mRNA complex and is recognized in the absence of U2 snRNA. EMBO J. 10: 1209–1216.
  • Sherman, F., G. P. Fink, and J. B. Hicks 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shpungin, S., A. Liberzon, H. Bangio, E. Yona, and D. J. Katcoff 1996. Association of yeast SIN1 with the tetratrico peptide repeats of CDC23. Proc. Natl. Acad. Sci. USA 93: 8274–8277.
  • Sikorski, R. S., W. A. Michaud, J. C. Wootton, M. S. Buguski, C. Connelly, and P. Hieter 1991. TPR proteins as essential components of the yeast cell cycle. Cold Spring Harbor Symp. Quant. Biol. 56: 663–673.
  • Siliciano, P. G., M. H. Jones, and C. Guthrie 1987. Saccharomyces cerevisiae has a U1-like small nuclear RNA with unexpected properties. Science 237: 1484–1487.
  • Siliciano, P. G., W. J. Kivens, and C. Guthrie 1991. More than half of yeast U1 snRNA is dispensable for growth. Nucleic Acids Res. 19: 6367–6372.
  • Sillekens, P. T., W. Habets, R. P. Beijer, and W. J. van Venrooij 1987. cDNA cloning of the human U1 snRNA-associated A protein: extensive homology between U1 and U2 snRNP-specific proteins. EMBO J. 6: 3841–3848.
  • Smith, R. L., M. J. Redd, and A. D. Johnson 1995. The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2. Genes Dev. 9: 2903–2910.
  • Smith, V., and B. G. Barrell 1991. Cloning of a yeast U1 snRNP 70k protein homologue: functional conservation of an RNA binding domain between humans and yeast. EMBO J. 10: 2627–2634.
  • Stultz, C. M., J. V. White, and T. F. Smith 1993. Structural analysis based on state-space modeling. Protein Sci. 2: 305–314.
  • Takagaki, Y., and J. L. Manley 1994. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 372: 471–481.
  • Tang, J., N. Abovich, M. L. Fleming, B. Seraphin, and M. Rosbash 1997. Identification and characterization of yeast homolog of U1 snRNP-specific protein C. EMBO J. 16: 4082–4091.
  • Tzamarias, D., and K. Struhl 1995. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev. 9: 821–831.
  • Umen, J. G., and C. Guthrie 1995. A novel role for a U5 snRNP protein in 3′ splice site selection. Genes Dev. 9: 855–868.
  • White, J. V., S. M. Stultz, and T. F. Smith 1994. Protein classification by stochastic modeling and optimal filtering of amino acid sequences. Math. Biosci. 119: 35–75.
  • Williams, C., and K. O’Hare. Personal communication.
  • Wolfe, K. H., and D. C. Shields 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.
  • Zhang, K., D. Smouse, and N. Perrimon 1991. The crooked neck gene of Drosophila contains a motif found in a family of yeast cell cycle genes. Genes Dev. 5: 1080–1091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.