57
Views
188
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Bone Morphogenetic Proteins Induce Cardiomyocyte Differentiation through the Mitogen-Activated Protein Kinase Kinase Kinase TAK1 and Cardiac Transcription Factors Csx/Nkx-2.5 and GATA-4

, , , , , , , , , , , & show all
Pages 7096-7105 | Received 22 Jan 1999, Accepted 20 Jul 1999, Published online: 28 Mar 2023
 

Abstract

Bone morphogenetic proteins (BMPs) have been shown to induce ectopic expression of cardiac transcription factors and beating cardiomyocytes in nonprecardiac mesodermal cells in chicks, suggesting that BMPs are inductive signaling molecules that participate in the development of the heart. However, the precise molecular mechanisms by which BMPs regulate cardiac development are largely unknown. In the present study, we examined the molecular mechanisms by which BMPs induce cardiac differentiation by using the P19CL6 in vitro cardiomyocyte differentiation system, a clonal derivative of P19 embryonic teratocarcinoma cells. We established a permanent P19CL6 cell line, P19CL6noggin, which constitutively overexpresses the BMP antagonist noggin. Although almost all parental P19CL6 cells differentiate into beating cardiomyocytes when treated with 1% dimethyl sulfoxide, P19CL6noggin cells did not differentiate into beating cardiomyocytes nor did they express cardiac transcription factors or contractile protein genes. The failure of differentiation was rescued by overexpression of BMP-2 or addition of BMP protein to the culture media, indicating that BMPs were indispensable for cardiomyocyte differentiation in this system. Overexpression of TAK1, a member of the mitogen-activated protein kinase kinase kinase superfamily which transduces BMP signaling, restored the ability of P19CL6noggin cells to differentiate into cardiomyocytes and concomitantly express cardiac genes, whereas overexpression of the dominant negative form of TAK1 in parental P19CL6 cells inhibited cardiomyocyte differentiation. Overexpression of both cardiac transcription factors Csx/Nkx-2.5 and GATA-4 but not of Csx/Nkx-2.5 or GATA-4 alone also induced differentiation of P19CL6noggin cells into cardiomyocytes. These results suggest that TAK1, Csx/Nkx-2.5, and GATA-4 play a pivotal role in the cardiogenic BMP signaling pathway.

ACKNOWLEDGMENTS

We thank R. M. Harland, H. Shibuya, R. J. Davis, D. B. Wilson, and E. N. Olson for providing plasmids.

This study was supported by a grant-in-aid for scientific research and developmental science research from the Ministry of Education, Science and Culture of Japan and the Program for Promotion of Fundamental Studies in Health Sciences of the Organization for Drug ADR Relief, R & D Promotion and Product Review of Japan (to I.K.).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.