26
Views
45
CrossRef citations to date
0
Altmetric
Chromosome Structure and Dynamics

Trf4 and Trf5 Proteins of Saccharomyces cerevisiae Exhibit Poly(A) RNA Polymerase Activity but No DNA Polymerase Activity

, , &
Pages 10183-10189 | Received 08 Aug 2005, Accepted 31 Aug 2005, Published online: 27 Mar 2023
 

Abstract

The Saccharomyces cerevisiae Trf4 and Trf5 proteins are members of a distinct family of eukaryotic DNA polymerase β-like nucleotidyltransferases, and a template-dependent DNA polymerase activity has been reported for Trf4. To define the nucleotidyltransferase activities associated with Trf4 and Tr5, we purified these proteins from yeast cells and show that whereas both proteins exhibit a robust poly(A) polymerase activity, neither of them shows any evidence of a DNA polymerase activity. The poly(A) polymerase activity, as determined for Trf4, is strictly Mn2+ dependent and highly ATP specific, incorporating AMP onto the free 3′-hydroxyl end of an RNA primer. Unlike the related poly(A) polymerases from other eukaryotes, which are located in the cytoplasm and regulate the stability and translation efficiency of specific mRNAs, the Trf4 and Trf5 proteins are nuclear, and a multiprotein complex associated with Trf4 has been recently shown to polyadenylate a variety of misfolded or inappropriately expressed RNAs which activate their degradation by the exosome. To account for the effects of Trf4/Trf5 proteins on the various aspects of DNA metabolism, including chromosome condensation, DNA replication, and sister chromatid cohesion, we suggest an additional and essential role for the Trf4 and Trf5 protein complexes in generating functional mRNA poly(A) tails in the nucleus.

ACKNOWLEDGMENTS

We thank Dianne Johnson for technical assistance in the cloning of the TRF4 and TRF5 genes.

This work was supported by National Institutes of Health Sciences grant CA107650, the Wellcome Trust International Senior Research fellowship, the Hungarian Science Foundation grant (OTKA T043354), and the Marie Curie International Reintegration grant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.