761
Views
100
CrossRef citations to date
0
Altmetric
Reviews

PCSK9 as a therapeutic target of dyslipidemia

, PhD
Pages 19-28 | Published online: 21 Nov 2008
 

Abstract

Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9), which promotes degradation of hepatic low density lipoprotein receptor (LDLR), has a role in plasma cholesterol metabolism. Its gene is associated with the development of familial hypercholesterolemia. mRNA silencing or inhibition of PCSK9-induced degradation of LDLR may be used to treat this disease. Objective/methods: To summarize approaches proposed to reduce the levels of PCSK9 and/or its activity. Results/conclusions: mRNA knockdown approaches include the use of antisense oligonucleotides either as soluble phosphorothioates or locked nucleic acids and lipidoid nanoparticles embedded with small interfering RNAs. Passive immunization is also an option. Other strategies include inhibition of the zymogen activation of proPCSK9, or the interaction of PCSK9 with the EGF-A domain of the LDLR. The N-terminal prosegment and the C-terminal Cys-His rich domain (CHRD), are alternative targets. Annexin A2 specifically binds the CHRD and inhibits PCSK9 function, and Annexin A2 peptide mimics could pave the way for the development of novel PCSK9-inhibitory compounds.

Acknowledgements

Many thanks to members of the Seidah lab for their contributions to the PCSK9 work and to Brigitte Mary for secretarial help.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.