381
Views
45
CrossRef citations to date
0
Altmetric
Review

Profile of romosozumab and its potential in the management of osteoporosis

&
Pages 1221-1231 | Published online: 13 Apr 2017

Figures & data

Figure 1 The canonical Wnt-β-catenin signaling pathway and the effects of inhibition through loss of function mutations and sclerostin inhibition.

Notes: (A) When Wnt binds to the LRP-5 and -6 coreceptors and the specific Frizzled family receptor, inhibition of the β-catenin destruction complex occurs. Accumulated β-catenin in the cytoplasm enters the nucleus, leading to transcription of Wnt-responsive genes and bone formation. Panels (B), (C), and (D) show how various mechanisms inhibit the canonical Wnt-β-catenin signaling pathway. Due to the inability of Wnt to exert its effect due to (B) the loss of mutation of LRP-5 and LRP-6 coreceptors, (C) the loss of mutation of Wnt, and (D) the prevention of Wnt from binding to LRP-5 or LRP-6 coreceptors by sclerostin, the β-catenin destruction complex is assembled. β-Catenin is phosphorylated and degraded. Wnt-responsive genes are not activated, leading to an increased bone resorption and a decreased bone formation. Copyright ©2015. Dove Medical Press. Shah AD, Shoback D, Lewiecki EM. Sclerostin inhibition: a novel therapeutic approach in the treatment of osteoporosis. Int J Womens Health. 2015;7:565–580.Citation7
Abbreviation: LRP, LDL-receptor-related protein.
Figure 1 The canonical Wnt-β-catenin signaling pathway and the effects of inhibition through loss of function mutations and sclerostin inhibition.

Figure 2 Mechanism of action of romosozumab.

Notes: Romosozumab is a human monoclonal antibody that binds sclerostin (an inhibitor of Wnt pathway signaling). When this monoclonal antibody binds to sclerostin, sclerostin cannot bind to the LRP-5 and LRP-6 receptors and is unable to exert its inhibitory effect. Wnt binds to LRP-5 or LRP-6 coreceptors and specific Frizzled family receptor, leading to activation of the Wnt signaling pathway and bone formation. Copyright ©2015. Dove Medical Press. Shah AD, Shoback D, Lewiecki EM. Sclerostin inhibition: a novel therapeutic approach in the treatment of osteoporosis. Int J Womens Health. 2015;7:565–580.Citation7
Abbreviation: LRP, LDL-receptor-related protein.
Figure 2 Mechanism of action of romosozumab.

Table 1 Important Phase I, Phase II, and Phase III studies of romosozumab

Figure 3 Changes in the levels of bone formation markers and bone resorption markers with subcutaneous injections of TPTD (20 μg daily) or ROMO (210 mg once monthly) for 1 year.

Notes: Reproduced from Appelman-Dijkstra NM, Papapoulos SE. Modulating bone resorption and bone formation in opposite directions in the treatment of postmenopausal osteoporosis. Drugs. 2015;75(10):1049–1058Citation36 which was originally sourced from Leder BZ, Tsai JN, Uihlein AV, et al, Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial, J Clin Endocrinol Metab, 2014;99(5):1694–1700, by permission of Oxford University Press.Citation49
Abbreviations: ROMO, romosozumab; TPTD, teriparatide.
Figure 3 Changes in the levels of bone formation markers and bone resorption markers with subcutaneous injections of TPTD (20 μg daily) or ROMO (210 mg once monthly) for 1 year.