427
Views
74
CrossRef citations to date
0
Altmetric
Original Research

Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach

, , , , , & show all
Pages 1605-1621 | Published online: 25 May 2017

Figures & data

Table 1 Independent variables and their levels

Table 2 Experimental matrix containing run parameters and conditions for the preparation of CUR-DOX-LCL

Table 3 Experimental data for the studied dependent variables

Figure 1 Summary of fit for the models.

Notes: The abscissa shows the statistical parameters R2 and Q2, the model validity and the reproducibility for the evaluated responses (Y1, encapsulated CUR concentration [μg/mL]; Y2, encapsulated DOX concentration [μg/mL]; Y3, CUR entrapment efficiency [%]; Y4, DOX entrapment efficiency [%]; Y5, size of the liposomes [nm]; Y6, zeta potential of the liposomes [mV]). The ordinate indicates the values for R2, Q2, the model validity and the reproducibility ranging from 0 to 1.
Abbreviations: CUR, curcumin; DOX, doxorubicin.
Figure 1 Summary of fit for the models.

Table 4 Statistical parameters – one-way analysis of variance test for studied responses

Figure 2 Regression coefficient plots showing the influence of formulation factors on the encapsulated CUR concentration (A), the encapsulated DOX concentration (B), the EE for CUR (C), the EE for DOX (D), the size of the liposomes (E) and the zeta potential of the liposomes (F).

Notes: Pho refers to X1, phospholipid concentration (mM); Cur refers to X2, curcumin concentration (mM); Dox refers to X3, doxorubicin concentration (mM); Wor refers to X4, working temperature (°C); pH refers to X5, buffer pH (units); Ph:Ch refers to X6, phospholipid:cholesterol molar ratio.
Abbreviations: CUR, curcumin; DOX, doxorubicin.
Figure 2 Regression coefficient plots showing the influence of formulation factors on the encapsulated CUR concentration (A), the encapsulated DOX concentration (B), the EE for CUR (C), the EE for DOX (D), the size of the liposomes (E) and the zeta potential of the liposomes (F).

Figure 3 Contour plots showing the interaction between variables on the responses: the effect of X1X2 on entrapped CUR concentration, at 55°C and pH 5 (A); the effect of X1X2 on entrapped DOX concentration, at 55°C and pH 5 (B); the effect of X1X2 on CUR entrapment efficiency, at 55°C and pH 5 (C); the effect of X1X3 on DOX entrapment efficiency, at 55°C and pH 4.5 (D) and 5 (E); the effect of X1X3 on zeta potential, at 55°C and pH 4.5 (F) and 5 (G); and the effect of X2X6 on zeta potential, at 55°C and pH 5 (H).

Notes: X1, phospholipid concentration (mM); X2, curcumin concentration (mM); X3, doxorubicin concentration (mM); X6, phospholipid:cholesterol molar ratio.

Abbreviations: CUR, curcumin; DOX, doxorubicin.
Figure 3 Contour plots showing the interaction between variables on the responses: the effect of X1X2 on entrapped CUR concentration, at 55°C and pH 5 (A); the effect of X1X2 on entrapped DOX concentration, at 55°C and pH 5 (B); the effect of X1X2 on CUR entrapment efficiency, at 55°C and pH 5 (C); the effect of X1X3 on DOX entrapment efficiency, at 55°C and pH 4.5 (D) and 5 (E); the effect of X1X3 on zeta potential, at 55°C and pH 4.5 (F) and 5 (G); and the effect of X2X6 on zeta potential, at 55°C and pH 5 (H).Notes: X1, phospholipid concentration (mM); X2, curcumin concentration (mM); X3, doxorubicin concentration (mM); X6, phospholipid:cholesterol molar ratio.

Figure 4 Design space for the formulation of CUR-DOX-LCL, represented as a function of CUR concentration and phospholipid concentration.

Abbreviations: CUR, curcumin; DOX, doxorubicin; LCL, long-circulating liposomes.
Figure 4 Design space for the formulation of CUR-DOX-LCL, represented as a function of CUR concentration and phospholipid concentration.

Table 5 Design space hypercube limits for independent variables, at 55°C and pH 5 of phosphate buffer

Table 6 Experimental and predicted results for the formulation within the design space and the formulation outside the design space

Figure 5 In vitro release profile of CUR and DOX from liposomes.

Abbreviations: CUR, curcumin; DOX, doxorubicin.
Figure 5 In vitro release profile of CUR and DOX from liposomes.

Figure 6 Effects of CUR-DOX-LCL on the proliferation of C26 murine colon carcinoma cells.

Notes: The results show cell proliferation at 48 hours after incubation of C26 cells with 0.05–0.25 μM DOX, as a free form, DOX-LCL, and LCL co-encapsulated with CUR and DOX at a molar ratio of (A) DOX:CUR =1:9 and (B) DOX:CUR =1:167. Data are presented as the mean ± standard deviation of triplicate measurements. The results are expressed as percentage of inhibition of C26 cell proliferation following DOX, DOX-LCL and CUR-DOX-LCL treatments, compared to the proliferation of control cells (untreated cells). Significance was considered at values of P<0.05 (ns, P>0.05; *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001).
Abbreviations: CUR, curcumin; DOX, doxorubicin; LCL, long-circulating liposomes; ns, not significant.
Figure 6 Effects of CUR-DOX-LCL on the proliferation of C26 murine colon carcinoma cells.