0
Views
22
CrossRef citations to date
0
Altmetric
Review

Penehyclidine hydrochloride: a potential drug for treating COPD by attenuating Toll-like receptors

, &
Pages 317-322 | Published online: 01 Nov 2012
 

Abstract

Background

The aim of this review was to evaluate and summarize the available scientific information on penehyclidine hydrochloride (PHC) for the treatment of chronic obstructive pulmonary disease (COPD) as a result of its ability to attenuate Toll-like receptors. Penehyclidine hydrochloride is an anticholinergic drug manufactured in China, with both antimuscarinic and antinicotinic activity. PHC is used widely in the clinic as a reversal agent in cases of organic phosphorus poisoning and soman poisoning, but also may also have an important role as a bronchodilator in the treatment of obstructive airway disease, including asthma and, in particular, COPD.

Methods

Our bibliographic sources included the CAPLUS, MEDLINE, REGISTRY, CASREACT, CHEMLIST, CHEMCATS, and CNKI databases, updated to September 2012. In order to assess the data in detail, we used the search terms “penehyclidine hydrochloride,” “COPD,” “muscarinic receptor,” and “toll-like receptors.” Papers were restricted to those published in the English and Chinese languages, and to “paper” and “review” as the document type. Patents were also reviewed.

Results

Our survey mainly yielded the results of research on PHC and the mechanisms of COPD. COPD is a preventable and treatable disease with some significant extrapulmonary manifestations that may contribute to its severity in some patients. Recently, it has been shown that muscarinic receptors may interact with Toll-like receptors. Basic and clinical studies of the relationship between the mechanism of action and the effects of PHC in the respiratory tract have been studied by a number of laboratories and institutions. The main advantages of PHC are that it has few M2 receptor-associated cardiovascular side effects and attenuates Toll-like receptors.

Conclusion

PHC may be a promising candidate agent in the treatment of COPD in the future because of its ability to attenuate Toll-like receptors. This review should be of help to those intending to research this topic further.

Acknowledgments

This work was funded by the Science and Technology Pillar Program of Sichuan Province in 2009 (2009SZ0226), the Health Department of Sichuan Province (100491), and the Chengdu City Science and Technology Project (11PPYB010SF-289).

Disclosure

The authors report no conflicts of interest in this work.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.