249
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Thearubigins protect against acetaminophen-induced hepatic and renal injury in mice: biochemical, histopathological, immunohistochemical, and flow cytometry study

, , , , &
Pages 190-198 | Received 01 Feb 2015, Accepted 03 Jul 2015, Published online: 03 Aug 2015
 

Abstract

Context: Acetaminophen toxicity is used as a model for studying chemical toxicity. N-acetylcysteine (NAC) is used for the treatment of hepatotoxicity; however, there is no specific therapy for nephrotoxicity. Objective: This study was designed to investigate the potential protective effect of black tea extract (BTE) and its main phenolic pigment, thearubigins (TRs), against acetaminophen (APAP)-induced hepatic and renal injury in mice. Materials and methods: Besides control groups, six groups (n = 8) were given intraperitoneally APAP (300 mg/kg) and then after 1.5 hours were treated intraperitoneally as follows: NAC (318 mg/kg), BTE (3%, 4.5%), and TRs (50, 60, and 70 mg/kg). Six hours post-APAP injection, blood was collected for biochemical measurements. Later, liver and kidneys were removed for histopathological, immunohistochemical, and flow cytometry studies. Results: APAP increased alanine aminotransferase and malondialdehyde and decreased glutathione levels in blood. Treatments significantly reversed these changes mostly with NAC and TRs70. TRs showed dose-dependent significant differences. The APAP-induced central lobular hepatic necrosis and increased TUNEL positivity were mild with co-administration of NAC and TRs (60, 70) while moderate with co-administration of BTE (3, 4.5) and TRs50. The APAP-increased serum creatinine level was significantly reversed by treatments (mostly TRs60, 70). The APAP-induced renal tubular epithelial degeneration and necrosis were mild with co-administration of TRs (60, 70) while moderate with co-administration of NAC, BTE (3, 4.5), and TRs50. The APAP-accumulated apoptotic cells in sub-G1 phase were significantly decreased by treatments, mostly by NAC and TRs70 in the liver and TRs (60, 70) in kidneys. Conclusion: Thearubigins protected against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice possibly through their antioxidant activity.

Declaration of interest

The authors report no declarations of interest. This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University (KAU), Jeddah, under grant number (168/828/1434). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.