981
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Leucine-Rich Repeat Kinase 2 (LRRK2) Cellular Biology: A Review of Recent Advances in Identifying Physiological Substrates and Cellular Functions

, &
Pages 140-151 | Received 02 Sep 2011, Accepted 22 Sep 2011, Published online: 11 Nov 2011
 

Abstract

Abstract: Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common forms of inheritable Parkinson's disease and likely play a role in sporadic disease as well. LRRK2 is a large multidomain protein containing two key groups, a Ras-like GTP binding domain and a serine, threonine kinase domain. Mutations in the LRRK2 gene that associate with Parkinson's disease reside primarily within the two functional domains of the protein, suggesting that LRRK2 function is critical to the pathogenesis of the disease. The most common LRRK2 mutation increases kinase activity, making LRRK2 kinase inhibition an attractive target for small molecule drug development. However, the physiological function of LRRK2 kinase as well as its endogenous protein substrates remains poorly understood and has hindered drug development efforts. Recent advances in LRRK2 biology have revealed several potential cellular roles, interacting proteins, and putative physiological substrates. Together, a picture emerges of a complex multifunctional protein that exists in multiple cellular compartments. Through unclear mechanisms, LRRK2 kinase regulates cytoskeleton architecture through control of protein translation, phosphorylation of cytoskeletal proteins, and response to cellular stressors. This article will briefly cover some interesting recent studies in LRRK2 cellular biology and highlight emerging cellular models of LRRK2 kinase function.

Declaration of interest: The authors are employees of Merck & Co., Inc. (USA) and potentially own stock or stock options in the company. The authors report no other conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,079.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.