136
Views
2
CrossRef citations to date
0
Altmetric
Non-themed Articles

Thermal, mechanical and drug release characteristics of an acrylic film using active pharmaceutical ingredient as non-traditional plasticizer

, , &
Pages 644-653 | Received 04 Feb 2015, Accepted 10 Jun 2015, Published online: 02 Jul 2015
 

Abstract

The objective of this study was to investigate thermal and mechanical properties as well as in vitro drug release of Eudragit® RL (ERL) film using chlorpheniramine maleate (CPM) as either active pharmaceutical ingredient or non-traditional plasticizer. Differential scanning calorimeter was used to measure the glass transition temperature (Tg) of 0–100% w/w CPM in ERL physical mixture. Instron testing machine was used to investigate Young’s modulus, tensile stress and tensile strain (%) of ERL film containing 20–60% w/w CPM. Finally, a Franz diffusion cell was used to study drug release from ERL films obtained from four formulations, i.e. CRHP0/0, CRHP0/5, CRHP2/0 and CRHP2/5. The Tg of ERL was decreased when the weight percentage of CPM increased. The reduction of the Tg could be described by Kwei equation, indicating the interaction between CPM and ERL. Modulus and tensile stress decreased whereas tensile strain (%) increased when weight percentage of CPM increased. The change of mechanical properties was associated with the reduction of the Tg when weight percentage of CPM increased. ERL films obtained from four formulations could release the drug in no less than 10 h. Cumulative amount of drug release per unit area of ERL film containing only CPM (CRHP0/0) was lower than those obtained from the formulations containing traditional plasticizer (CRHP0/5), surfactant (CRHP2/0) or both of them (CRHP2/5). The increase of drug release was a result of the increase of drug permeability through ERL film and drug solubility based on traditional plasticizer and surfactant, respectively.

Acknowledgements

The authors would like to express our gratitude to Associate Professor Tapanee Hongratanaworakit for her suggestions and corrections during preparing the manuscript.

Declaration of interest

The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.