792
Views
27
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Electrochemical Behavior and Nonlinear Mott-Schottky Characterization of a Stainless Steel Passive Film

, , , &
Pages 1162-1181 | Received 18 Sep 2013, Accepted 28 Oct 2013, Published online: 21 Apr 2014
 

Abstract

The electrochemical behavior of 304-stainless steel in solutions with different pH values and chloride concentrations was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and a nonlinear Mott-Schottky analysis method. The results showed that the corrosion behavior of 304-stainless steel was affected by various factors, such as pH, chloride ion concentration, and dissolved oxygen. The pit initiation and propagation stage were observed in EIS plots through the addition of sodium chloride. In addition, the effect of pH on the passive film dominated one of the film growth kinetic reactions. The effect of chloride ion concentration was caused by the generation of more cation vacancies, leading the passive film more susceptible to pitting, which was also demonstrated by X-ray Photoelectron Spectroscopy. The results are consistent with the point defect model.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lanl.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.