168
Views
7
CrossRef citations to date
0
Altmetric
Bioanalytical

Comparative Proteomics in Rice Seedlings to Characterize the Resistance to Cadmium Stress by High-Performance Liquid Chromatography – Tandem Mass Spectrometry (HPLC-MS/MS) with Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)

, , , , , , , & show all
Pages 807-820 | Received 23 Jun 2019, Accepted 12 Oct 2019, Published online: 31 Oct 2019
 

Abstract

Cadmium (Cd) is a heavy metal used in industrial processes that impedes the growth of plants. Although intensive work has concentrated on the mechanism of rice under Cd stress, few studies compared the proteomic information on the mechanism between different cultivars. Different rice cultivars were screened and two cultivars, the japonica cultivar Bancanggengnuo (BCGN) and indica cultivar Yuzhenxiang (YZX) were selected to be the varieties for proteomic experiments. High-performance liquid chromatography – tandem mass spectrometry (HPLC-MS/MS) with an isobaric tag for relative and absolute quantitation (iTRAQ) was used to analyze the global protein profiles of these two cultivars. There were 109 and 209 differentially expressed proteins (DEPs) in the Cd treatment groups for BCGN and YZX respectively and 61 additional DEPs between cultivars after treatment. Pathway enrichment analysis showed that three pathways were altered in the cultivars, which affected photosynthesis and redox reactions. A total of 37 up- and 27 down-regulated proteins were identified in both cultivars exposed to Cd. The molecular regulatory network revealed that several proteins associated with carbohydrate metabolism, redox reaction and signal transduction were involved in and acted as the intersection point of disturbed metabolism. This is the first report on the comprehensive proteomic characterization of Cd-exposed leaf proteomes in rice. These findings may facilitate the unraveling molecular mechanism underlying Cd stress response in rice, and provide fundamental insights into the development of Cd-resistant rice cultivars. This work has explored the mechanism of Cd resistance at the protein level, which may be a novel target for improving the resistance of rice to this heavy metal.

Acknowledgments

We are thankful for the support in the high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and isobaric tag for relative and absolute quantitation (iTRAQ) from Luming biotechnology company.

Conflicts of interest

We declared that there were no conflicts of interest in the submission of this manuscript and that this manuscript was approved by all authors for publication.

Additional information

Funding

This work was supported by the earmarked fund for China Agriculture Research System (CARS-01-14), Finance project of Hunan province-The breeding of rice varieties with low cadimum accumulation, and Finance project of Hunan Province of Hunan Agricultural Science and Technology Innovation Fund (2017XC10, 2017SY01).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.