179
Views
7
CrossRef citations to date
0
Altmetric
Bioanalytical

Comparative Proteomics in Rice Seedlings to Characterize the Resistance to Cadmium Stress by High-Performance Liquid Chromatography – Tandem Mass Spectrometry (HPLC-MS/MS) with Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)

, , , , , , , & show all
Pages 807-820 | Received 23 Jun 2019, Accepted 12 Oct 2019, Published online: 31 Oct 2019

References

  • Aarti, P. D., R. Tanaka, and A. Tanaka. 2006. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiologia Plantarum 128(1):186–197. doi:10.1111/j.1399-3054.2006.00720.x
  • Aina, R., M. Labra, P. Fumagalli, C. Vannini, M. Marsoni, U. Cucchi, M. Bracale, S. Sgorbati, and S. Citterio. 2007. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environmental and Experimental Botany 59(3):381–392. doi:10.1016/j.envexpbot.2006.04.010
  • Aranjuelo, I., F. Doustaly, J. Cela, R. Porcel, M. Muller, R. Aroca, S. Munne-Bosch, and J. Bourguignon. 2014. Glutathione and transpiration as key factors conditioning oxidative stress in Arabidopsis thaliana exposed to uranium. Planta 239(4):817–830. doi:10.1007/s00425-013-2014-x
  • Aravind, P., M. Narasimha, and V. Prasad. 2005. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry 43(2):107–116. doi:10.1016/j.plaphy.2005.01.002
  • Atanasova-Penichon, V., C. Barreau, and F. Richard-Forget. 2016. Antioxidant secondary metabolites in Cereals: Potential involvement in resistance to fusarium and mycotoxin accumulation. Frontiers in Microbiology 7:566. ARTN doi:10.3389/fmicb.2016.00566.
  • Das, P., S. Samantaray, and G. R. Rout. 1997. Studies on cadmium toxicity in plants: A review. Environmental Pollution 98(1):29–36. doi:10.1016/S0269-7491(97)00110-3.
  • Ding, Y. F., Z. Chen, and C. Zhu. 2011. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). Journal of Experimental Botany 62(10):3563–3573. doi:10.1093/jxb/err046
  • Dong, J., W. H. Mao, G. P. Zhang, F. B. Wu, and Y. Cai. 2008. Root excretion and plant tolerance to cadmium toxicity – A review. Plant, Soil and Environment 53(5):193–200. doi:10.17221/2205-PSE.
  • Dos Santos, C. V., and P. Rey. 2006. Plant thioredoxins are key actors in the oxidative stress response. Trends in Plant Science 11:329–334. doi:10.1016/j.tplants.2006.05.005
  • Emamverdian, A., Y. Ding, F. Mokhberdoran, and Y. Xie. 2015. Heavy metal stress and some mechanisms of plant defense response. Scientific World Journal 2015:1. 10.1155/2015/756120
  • Fai, P. B., A. Grant, and B. Reid. 2007. Chlorophyll a fluorescence as a biomarker for rapid toxicity assessment. Environmental Toxicology and Chemistry 26(7):1520–1531. doi:10.1897/06-394R1.1.
  • Gajewska, E., R. Głowacki, J. Mazur, and M. Skłodowska. 2013. Differential response of wheat roots to Cu, Ni and Cd treatment: Oxidative stress and defense reactions. Plant Growth Regulation 71(1):13–20. doi:10.1007/s10725-013-9803-x.
  • Gallego, S. M., L. B. Pena, R. A. Barcia, C. E. Azpilicueta, M. F. Iannone, E. P. Rosales, M. S. Zawoznik, M. D. Groppa, and M. P. Benavides. 2012. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany 83:33–46. doi:10.1016/j.envexpbot.2012.04.006.
  • Ge, P., P. C. Hao, M. Cao, G. F. Guo, D. W. Lv, S. Subburaj, X. H. Li, X. Yan, J. T. Xiao, W. J. Ma., et al. 2013. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Proteomics 13(20):3046–3058. doi:10.1002/pmic.201300042.
  • Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12):909–930. doi:10.1016/j.plaphy.2010.08.016.
  • Hanke, G., and P. Mulo. 2013. Plant type ferredoxins and ferredoxin-dependent metabolism. Plant, Cell & Environment 36(6):1071–1084. 1111/pce.12046
  • Hasanuzzaman, M., K. Nahar, A. Rahman, J. Al Mahmud, H. F. Alharby, and M. Fujita. 2018. Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. Journal of Plant Interactions 13(1):203–212. doi:10.1080/17429145.2018.1458913.
  • Jorrin, J. V., A. M. Maldonado, and M. A. Castillejo. 2007. Plant proteome analysis: A 2006 update. Proteomics 7:2947–2962. doi:10.1002/pmic.200700135.
  • Khan, M. I., F. Nazir, M. Asgher, T. S. Per, and N. A. Khan. 2015. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. Journal of Plant Physiology 173:9–18. doi:10.1016/j.jplph.2014.09.011.
  • Moller, I. M. 2001. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology 52:561–591. doi:10.1146/annurev.arplant.52.1.561.
  • Oakley, A. 2011. Glutathione transferases: A structural perspective. Drug Metabolism Review 43(2):138–151. doi:10.3109/03602532.2011.558093.
  • Pastore, D., D. Trono, M. N. Laus, N. Di Fonzo, and Z. Flagella. 2006. Possible plant mitochondria involvement in cell adaptation to drought stress – A case study: Durum wheat mitochondria. Journal of Experimental Botany 58(2):195–210. doi:10.1093/jxb/erl273.
  • Perfus-Barbeoch, L., N. Leonhardt, A. Vavasseur, and C. Forestier. 2002. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal 32(4):539–548. doi:10.1046/j.1365-313X.2002.01442.x.
  • Rahman, A., M. G. Mostofa, K. Nahar, M. Hasanuzzaman, and M. Fujita. 2016. Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems Calcium-induced cadmium stress tolerance in rice. Brazilian Journal of Botany 39(2):393–407. doi:10.1007/s40415-015-0240-0.
  • Raskin, I. I., R. D. Smith, and D. E. Salt. 1997. Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology 8(2):221–226. doi:10.1016/S0958-1669(97)80106-1.
  • Sanita di Toppi, L., and R. Gabbrielli. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41:105–130.doi:10.1016/S0098-8472(98)00058-6.
  • Sebastian, A., and M. N. V. Prasad. 2015. Operative photo assimilation associated proteome modulations are critical for iron-dependent cadmium tolerance in Oryza sativa L. Protoplasma 252(5):1375–1386. doi:10.1007/s00709-015-0770-0.
  • Skorzynska-Polit, E., M. Drazkiewicz, and Z. Krupa. 2010. Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiologiae Plantarum 32:169–175. doi:10.1007/s11738-009-0393-1.
  • Tannu, N. S., and S. E. Hemby. 2006. Methods for proteomics in neuroscience. Progress in Brain Research 158:41–82. doi:10.1016/s0079-6123(06)58003-3.
  • Ueno, D., I. Kono, K. Yokosho, T. Ando, M. Yano, and J. F. Ma. 2009. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytologist 182(3):644–653. doi:10.1111/j.1469-8137.2009.02784.x.
  • Valderrama, R., F. J. Corpas, A. Carreras, M. V. Gomez-Rodriguez, M. Chaki, J. R. Pedrajas, A. Fernandez-Ocana, L. A. Del Rio, and J. B. Barroso. 2006. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant, Cell and Environment 29(7):1449–1459. doi:10.1111/j.1365-3040.2006.01530.x.
  • Wojcik, M., and A. Tukiendorf. 2004. Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regulation 44:71–80. doi:10.1007/s10725-004-1592-9.
  • Zhao, X. F., C. Q. Ding, L. Chen, S. H. Wang, Q. S. Wang, and Y. F. Ding. 2012. Comparative proteomic analysis of the effects of nitric oxide on alleviating Cd-induced toxicity in rice (Oryza sativa L.). Plant Omics 5:604–614.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.