193
Views
22
CrossRef citations to date
0
Altmetric
Electrochemistry

Simultaneous Voltammetric Determination of Flavanones Using an Electrode Based on Functionalized Single-Walled Carbon Nanotubes and Polyaluminon

, , &
Pages 2170-2189 | Received 09 Jan 2020, Accepted 17 Feb 2020, Published online: 26 Feb 2020
 

Abstract

A glassy carbon electrode (GCE) modified with polyaminobenzene sulfonic acid functionalized single-walled carbon nanotubes (f-SWCNT) and electropolymerized aluminon has been developed for the simultaneous determination of naringin and hesperidin. Polyaluminon has been obtained by potentiodynamic electrolysis in basic medium from 100 µmol L−1 monomer solution by 10-fold potential cycling from 0.1 to 0.8 V at potential scan rate of 100 mV s−1. The polyaluminon-based electrode provides a statistically significant increase in the naringin and hesperidin oxidation currents at the same potentials in comparison to the electrode modified with carbon nanotubes. The electrode has been characterized by scanning electron microscopy (SEM) and electrochemical methods. The polyaluminon-modified electrode has demonstrated a 1.5-fold increase in the effective surface area compared to the f-SWCNT/GCE as well as a 2.1-fold lower electron transfer resistance. The electrooxidation parameters of hesperidin and naringin, including the anodic transfer and diffusion coefficients and number of electrons, have been determined. Differential pulse voltammetry in phosphate buffer (PB) pH 5.0 has been employed for the simultaneous determination of naringin and hesperidin. The linear dynamic ranges from 0.10 to 2.5 and 2.5 to 25 µmol L−1 have been obtained for the both analytes with the detection limits of 0.020 and 0.029 µmol L−1 for naringin and hesperidin, respectively. The method has been employed for the analysis of orange and grapefruit juice.

Additional information

Funding

The financial support of Russian Foundation for Basic Research [grant No. 18-33-00220-mol_a] is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.