193
Views
22
CrossRef citations to date
0
Altmetric
Electrochemistry

Simultaneous Voltammetric Determination of Flavanones Using an Electrode Based on Functionalized Single-Walled Carbon Nanotubes and Polyaluminon

, , &
Pages 2170-2189 | Received 09 Jan 2020, Accepted 17 Feb 2020, Published online: 26 Feb 2020

References

  • Atabey, H., and H. Sari. 2011. Potentiometric, theoretical, and thermodynamic studies on equilibrium constants of aurintricarboxylic acid and determination of stability constants of its complexes with Cu2+, Ni2+, Zn2+, Co2+, Hg2+, and Pb2+ metal ions in aqueous solution. Journal of Chemical & Engineering Data 56 (10):3866–72. doi:10.1021/je200528f.
  • Baira, E., I. Dagla, E. Siapi, P. Zoumpoulakis, A. Tsarbopoulos, P. Simitzis, M. Goliomytis, S. G. Deligeorgis, A.-L. Skaltsounis, and E. Gikas. 2019. Development of a validated UHPLC-ESI(-)-HRMS methodology for the simultaneous quantitative determination of hesperidin, hesperetin, naringin, and naringenin in chicken plasma. Food Analytical Methods 12 (5):1187–96. doi:10.1007/s12161-018-01420-4.
  • Bard, A. J., and L. R. Faulkner. 2001. Electrochemical methods: Fundamentals and applications. 2nd ed. New York: Wiley.
  • Bertuola, M., D. E. Pissinis, A. A. Rubert, E. D. Prieto, and M. A. Fernández Lorenzo de Mele. 2016. Impact of molecular structure of two natural phenolic isomers on the protective characteristics of electropolymerized nanolayers formed on copper. Electrochimica Acta 215:289–97. doi:10.1016/j.electacta.2016.08.100.
  • Büyüktuncel, E. 2017. Fast determination of naringin and hesperidin in natural and commercial citrus juices by HPLC method. Asian Journal of Chemistry 29 (11):2384–6. doi:10.14233/ajchem.2017.20675.
  • Chandrashekar, B. N., B. E. K. Swamy, K. R. V. Mahesh, U. Chandra, and B. S. Sherigara. 2009. Electrochemical studies of bromothymol blue at surfactant modified carbon paste electrode by using cyclic voltammetry. International Journal of Electrochemical Science 4 (3):471–80.
  • Ensafi, A. A., S. Karbalaei, E. Heydari-Bafrooei, and B. Rezaei. 2016. Biosensing of naringin in marketed fruits and juices based on its interaction with DNA. Journal of the Iranian Chemical Society 13 (1):19–27. doi:10.1007/s13738-015-0707-8.
  • Gao, Y., X. Wu, H. Wang, W. Lu, and M. Guo. 2018. Highly sensitive detection of hesperidin using AuNPs/rGO modified glassy carbon electrode. The Analyst 143 (1):297–303. doi:10.1039/C7AN01706E.
  • Guss, E. V., G. K. Ziyatdinova, A. S. Zhupanova, and H. C. Budnikov. 2020. Voltammetric determination of quercetin and rutin in their simultaneous presence on an electrode modified with polythymolphthalein. Journal of Analytical Chemistry 75 (4):526–35. doi:10.1134/S106193482004005X.
  • Hejniak, J., I. Baranowska, S. Stencel, and S. Bajkacz. 2019. Separation and determination of selected polyphenols from medicinal plants. Journal of Chromatographic Science 57 (1):17–26. doi:10.1093/chromsci/bmy075.
  • Hu, D.-D., Q.-B. Han, L. L.-D. Zhong, Y.-H. Li, C.-Y. Lin, H.-M. Ho, M. Zhang, S.-H. Lin, L. Zhao, T. Huang, et al. 2015. Simultaneous determination of ten compounds in rat plasma by UPLC-MS/MS: Application in the pharmacokinetic study of Ma-Zi-Ren-Wan. Journal of Chromatography B 1000:136–46. doi:10.1016/j.jchromb.2015.07.003.
  • Irkin, R., S. Dogan, N. Degirmencioglu, M. Diken, and M. Guldas. 2015. Phenolic content, antioxidant activities and stimulatory roles of Citrus fruits on some lactic acid bacteria. Archives of Biological Sciences 67 (4):1313–21. doi:10.2298/ABS140909108I.
  • Khan, M., K. Zill-E-Huma, and O. Dangles. 2014. A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis 33 (1):85–104. doi:10.1016/j.jfca.2013.11.004.
  • Lasia, A. 2014. Electrochemical impedance spectroscopy and its applications. New York: Springer. doi:10.1007/978-1-4614-8933-7.
  • Lee, B., J. B. Weon, B.-R. Yun, J. Lee, M. R. Eom, and C. J. Ma. 2014. Simultaneous determination of five major compounds in the traditional medicine Pyeongwee-San by high performance liquid chromatography-diode array detection and liquid chromatography-mass spectrometry/mass spectrometry. Pharmacognosy Magazine 10 (37):S22–S9. doi:10.4103/0973-1296.127335.
  • Lv, X., S. Zhao, Z. Ning, H. Zeng, Y. Shu, O. Tao, C. Xiao, C. Lu, and Y. Liu. 2015. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal 9 (1):68. doi:10.1186/s13065-015-0145-9.
  • Ma, F., W. Zhang, J. Wang, L. Zhang, and G. Chen. 2016. Fabrication of a carbon nanotube-polyurethane composite electrode by in situ polyaddition for use in amperometric detection in capillary electrophoresis. Microchimica Acta 183 (9):2579–87. doi:10.1007/s00604-016-1900-x.
  • Ma, X.-L., R.-Y. Chen, X. Zheng, X. Chen, and Z. Chen. 2010. Preparation and application of naringin sensor based on molecularly imprinting technique. Chinese Journal of Analytical Chemistry (Chinese Version) 38 (1):100–4. doi:10.3724/SP.J.1096.2010.00100.
  • Masek, A., M. Zaborski, and E. Chrzescijanska. 2011. Electrooxidation of flavonoids at platinum electrode studied by cyclic voltammetry. Food Chemistry 127 (2):699–704. doi:10.1016/j.foodchem.2010.12.127.
  • Mielczarek, C. 2005. Acid-base properties of selected flavonoid glycosides. European Journal of Pharmaceutical Sciences 25 (2-3):273–9. doi:10.1016/j.ejps.2005.03.002.
  • Musmade, K. P., M. Trilok, S. J. Dengale, K. Bhat, M. S. Reddy, P. B. Musmade, and N. Udupa. 2014. Development and validation of liquid chromatographic method for estimation of naringin in nanoformulation. Journal of Pharmaceutics 2014:1–8. doi:10.1155/2014/864901.
  • Ni, H., S. F. Zhang, Q. F. Gao, Y. Hu, Z. D. Jiang, and F. Chen. 2015. Development and evaluation of simultaneous quantification of naringin, prunin, naringenin, and limonin in citrus juice. Food Science and Biotechnology 24 (4):1239–47. doi:10.1007/s10068-015-0159-z.
  • Obendorf, D., and E. Reichart. 1995. Determination of hesperidin by catholic stripping voltammetry in orange juice and helopyrin, a phytopharmaceutical preparation. Electroanalysis 7 (11):1075–81. doi:10.1002/elan.1140071115.
  • Perlatti, B., J. B. Fernandes, M. F. G. F. Silva, J. A. Ardila, R. L. Carneiro, B. H. S. Souza, E. N. Costa, W. I. Eduardo, A. L. Boiça Junior, and M. R. Forim. 2016. Application of a quantitative HPLC-ESI-MS/MS method for flavonoids in different vegetables matrices. Journal of the Brazilian Chemical Society 27 (3):475–83. doi:10.5935/0103-5053.20150273.
  • Reichart, E., and D. Obendorf. 1998. Determination of naringin in grapefruit juice by cathodic stripping differential pulse voltammetry at the hanging mercury drop electrode. Analytica Chimica Acta 360 (1-3):179–87. doi:10.1016/S0003-2670(97)00704-6.
  • Serra, H., T. Mendes, M. R. Bronze, and A. L. Simplício. 2008. Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones. Bioorganic & Medicinal Chemistry 16 (7):4009–18. doi:10.1016/j.bmc.2008.01.028.
  • Silva, L. C. R. C., J. M. David, R. dos, S. Q. Borges, S. L. C. Ferreira, J. P. David, P. S. dos Reis, and R. E. Bruns. 2014. Determination of flavanones in orange juices obtained from different sources by HPLC/DAD. Journal of Analytical Methods in Chemistry 2014:1–5. doi:10.1155/2014/296838.
  • Sims, M. J., Q. Li, R. T. Kachoosangi, G. G. Wildgoose, and R. G. Compton. 2009. Using multiwalled carbon nanotube modified electrodes for the adsorptive striping voltammetric determination of hesperidin. Electrochimica Acta 54 (22):5030–4. doi:10.1016/j.electacta.2008.10.056.
  • Sun, B., X. Hou, D. Li, Y. Gou, F. Hu, W. Li, and X. Shi. 2019. Electrochemical sensing and high selective detection of hesperidin with molecularly imprinted polymer based on ultrafine activated carbon. Journal of the Electrochemical Society 166 (15):B1644–52. doi:10.1149/2.1141915jes.
  • Sun, D., F. Wang, K. Wu, J. Chen, and Y. Zhou. 2009. Electrochemical determination of hesperidin using mesoporous SiO2 modified electrode. Microchimica Acta 167 (1-2):35–9. doi:10.1007/s00604-009-0200-0.
  • Sun, Y., J. Wang, S. Gu, Z. Liu, Y. Zhang, and X. Zhang. 2010. Simultaneous determination of flavonoids in different parts of Citrus reticulata ‘Chachi’ fruit by high performance liquid chromatography–photodiode array detection. Molecules 15 (8):5378–88. doi:10.3390/molecules15085378.
  • Tığ, G. A., E. Ö. Bolat, B. Zeybek, and Ş. Pekyardımcı. 2016. Hesperidin-dsDNA interaction based on electrochemically reduced graphene oxide and poly-(2,6-pyridinedicarboxylic acid) modified glassy carbon electrode. Hacettepe Journal of Biology and Chemistry 44 (4):487–97. doi:10.15671/HJBC.2016.129.
  • Tong, L., D. Zhou, J. Gao, Y. Zhu, H. Sun, and K. Bi. 2012. Simultaneous determination of naringin, hesperidin, neohesperidin, naringenin and hesperetin of Fractus aurantii extract in rat plasma by liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 58:58–64. doi:10.1016/j.jpba.2011.05.001.
  • Wang, W.,. L. Zhao, H. Huang, J. Yao, L. Zhou, D. Wang, and X. Qiu. 2018. Development of an ultra-high performance liquid chromatography method for simultaneous determination of six active compounds in Fructus aurantii and rat plasma and its application to a comparative pharmacokinetic study in rats administered with different doses. Journal of Analytical Methods in Chemistry 2018:7579136. doi:10.1155/2018/7579136.
  • Weon, J. B., J. Lee, B.-R. Yun, M. R. Eom, and C. J. Ma. 2014. Simultaneous determination of 14 bioactive compounds in Samchulkunbi-tang using HPLC-DAD and LC-MS. Analytical Methods 6 (15):6023–30. doi:10.1039/C4AY00386A.
  • Weon, J. B., H. J. Yang, B. Lee, J. Y. Ma, and C. J. Ma. 2015. Quantitative analysis of the eight major compounds in the Samsoeum using a high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometer. Pharmacognosy Magazine 11 (42):320–6. doi:10.4103/0973-1296.153085.
  • Zhang, J. 2007. Flavonoids in grapefruit and commercial grapefruit juices: Concentration, distribution, and potential health benefits. Proceedings of the Florida State Horticultural Society 120:288–94.
  • Zhu, H., J. Guan, J. Shi, X. Pan, S. Chang, T. Zhang, B. Feng, and J. Gu. 2019. Simultaneous determination of eight bioactive constituents of Zhi-Zi-Hou-Po decoction in rat plasma by ultra high performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. Journal of Separation Science doi:10.1002/jssc.20190067010.1002/jssc.201900670.
  • Ziyatdinova, G., E. Kozlova, and H. Budnikov. 2015. Electropolymerized eugenol-MWNT-based electrode for voltammetric evaluation of wine antioxidant capacity. Electroanalysis 27 (7):1660–8. doi:10.1002/elan.201400712.
  • Ziyatdinova, G., E. Kozlova, and H. Budnikov. 2017. Polyquercetin/MWNT-modified electrode for the determination of natural phenolic antioxidants. Electroanalysis 29 (11):2610–9. doi:10.1002/elan.201700440.
  • Ziyatdinova, G., E. Kozlova, and H. Budnikov. 2018. Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of L-cysteine. Electrochimica Acta 270:369–77. doi:10.1016/j.electacta.2018.03.102.
  • Ziyatdinova, G. K., and H. C. Budnikov. 2015. Natural phenolic antioxidants in bioanalytical chemistry: State of the art and prospects of development. Russian Chemical Reviews 84 (2):194–224. doi:10.1070/RCR4436.
  • Ziyatdinova, G., E. Yakupova, E. Ziganshina, and H. Budnikov. 2019. First order derivative voltammetry on the in situ surfactant modified electrode for naringin quantification. Electroanalysis 31 (11):2130–7. doi:10.1002/elan.201900257.
  • Zou, Z., W. Xi, Y. Hu, C. Nie, and Z. Zhou. 2016. Antioxidant activity of Citrus fruits. Food Chemistry 196:885–96. doi:10.1016/j.foodchem.2015.09.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.